Empir Software Eng @ CrossMark
https://doi.org/10.1007/s10664-017-9591-4

Do software models based on the UML aid in source-code
comprehensibility? Aggregating evidence from 12
controlled experiments

Giuseppe Scanniello! - Carmine Gravino? -

Marcela Genero® - José A. Cruz-Lemus? -

Genoveffa Tortora? - Michele Risi? - Gabriella Dodero?

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract In this paper, we present the results of long-term research conducted in order to
study the contribution made by software models based on the Unified Modeling Language
(UML) to the comprehensibility of Java source-code deprived of comments. We have con-
ducted 12 controlled experiments in different experimental contexts and on different sites
with participants with different levels of expertise (i.e., Bachelor’s, Master’s, and PhD stu-
dents and software practitioners from Italy and Spain). A total of 333 observations were
obtained from these experiments. The UML models in our experiments were those produced

Communicated by: Richard Paige

b4 Carmine Gravino
gravino @unisa.it

Giuseppe Scanniello
giuseppe.scanniello@unibas.it

Marcela Genero
marcela.genero@uclm.es

José A. Cruz-Lemus
joseantonio.cruz@uclm.es

Genoveffa Tortora
tortora@unisa.it

Michele Risi
mrisi @unisa.it

Gabriella Dodero
Gabriella.Dodero@unibz.it

University of Basilicata, Potenza, Italy
University of Salerno, Fisciano, Italy
University of Castilla-La Mancha, Ciudad Real, Spain

Free University of Bozen, Bolzano-Bozen, Italy

Published online: 03 February 2018 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9591-4&domain=pdf
mailto:gravino@unisa.it
mailto:giuseppe.scanniello@unibas.it
mailto:marcela.genero@uclm.es
mailto:joseantonio.cruz@uclm.es
mailto:tortora@unisa.it
mailto:mrisi@unisa.it
mailto:Gabriella.Dodero@unibz.it

Empir Software Eng

in the analysis and design phases. The models produced in the analysis phase were created
with the objective of abstracting the environment in which the software will work (i.e., the
problem domain), while those produced in the design phase were created with the goal of
abstracting implementation aspects of the software (i.e., the solution/application domain).
Source-code comprehensibility was assessed with regard to correctness of understanding,
time taken to accomplish the comprehension tasks, and efficiency as regards accomplishing
those tasks. In order to study the global effect of UML models on source-code comprehen-
sibility, we aggregated results from the individual experiments using a meta-analysis. We
made every effort to account for the heterogeneity of our experiments when aggregating the
results obtained from them. The overall results suggest that the use of UML models affects
the comprehensibility of source-code, when it is deprived of comments. Indeed, models
produced in the analysis phase might reduce source-code comprehensibility, while increas-
ing the time taken to complete comprehension tasks. That is, browsing source code and
this kind of models together negatively impacts on the time taken to complete comprehen-
sion tasks without having a positive effect on the comprehensibility of source code. One
plausible justification for this is that the UML models produced in the analysis phase focus
on the problem domain. That is, models produced in the analysis phase say nothing about
source code and there should be no expectation that they would, in any way, be beneficial to
comprehensibility. On the other hand, UML models produced in the design phase improve
source-code comprehensibility. One possible justification for this result is that models pro-
duced in the design phase are more focused on implementation details. Therefore, although
the participants had more material to read and browse, this additional effort was paid back
in the form of an improved comprehension of source code.

Keywords Aggregation - Heterogeneity - Unified modeling language - Controlled
experiments

1 Introduction

The Unified Modelingl.anguage (UML) (OMG 2005) is considered to be the de-facto stan-
dard in the analysis, design, and evolution of object-oriented software (Erickson and Siau
2007; Grossman et al. 2005), despite the fact that domain-specific modeling languages are
increasing in popularity (Hutchinson et al. 2011). However, many software companies are
still reluctant to use UML because it is perceived to be difficult to learn and use Agarwal
and Sinha (2003). It may, therefore, be important to investigate whether or not the use of
the UML makes a practical difference in software development and evolution, thus possibly
encouraging resilient companies to adopt UML.

The UML has been the subject of a number of empirical studies in the software engi-
neering field (Budgen et al. 2011). Of these studies, only a few are focused on the usage of
this notation throughout the software development life cycle (Anda et al. 2006). This lack
is even more evident in software maintenance and evolution (e.g., Bavota et al. 2013, Scan-
niello et al. 2014). Scanniello et al. (2010) conducted an industrial survey regarding the use
of the UML in the software industry. The results showed that software engineers wishing to
deal with software maintenance and evolution very often have at their disposal only UML-
based models (or simply UML models) produced in the requirements engineering process
(or analysis phase) and, in a few cases, those produced in the design phase. Using the find-
ings of this survey as a basis, we began long-term research with the aim of studying the
contribution made by UML-based models produced in the analysis and design phases to
source-code comprehensibility. In particular, we conducted 12 controlled experiments with

@ Springer

Empir Software Eng

different kinds of participants (Gravino et al. 2010, 2015; Scanniello et al. 2010, 2014, 2015)
to study the effect of these kinds of models on the comprehension of source code deprived
of comments. We removed comments to avoid their effect being confused with the main
factor studied (i.e., the presence or the absence of software models).

In order to aggregate the results of these experiments and to obtain the global effect of
analysis and design UML models on source-code comprehensibility, we carried out a meta-
analysis on the results obtained from the individual experiments. In this paper, we present
the results of this aggregation by attempting to answer the following research question:

— Do software models produced in the analysis and design phases aid the comprehension
of Java source code (assessed on the basis of the answers developers provide to ques-
tions on that code), and do these models affect the time taken to comprehend that code
and the efficiency with which that comprehension occurs?

The research work presented in this paper is based on that presented in Scanniello et al.
(2015), in which we showed the preliminary results obtained after the aggregation of our 12
controlled experiments. The current paper extends the previous work as follows: (i) we have
considered issues related to the heterogeneity of the individual experiments in the aggre-
gation of their results; (ii) we have considered an additional dependent variable, namely
Efficiency, which is computed as the ratio between the level of comprehension achieved
when performing a task and and the time required to complete it; and (iii) we have extended
the discussion concerning related work, experimental results, and threats to validity.

In this new paper, we provide a detailed description of the following main contributions:

— The results of global effect of analysis and design UML models on source-code
comprehensibility;

— A discussion regarding the possible practical implications of the results of our study;

— How to deal with the heterogeneity of experiments when using a meta-analysis to
aggregate the results obtained from them.

This paper is organized as follows. We discuss related work in Section 2, while the back-
ground is presented in Section 3. Our long-term research is presented in Section 4, while the
results obtained are shown and discussed in Section 5. In Section 5, we also discuss the prac-
tical implications of the results of our study from the perspectives of both researchers and
professionals. We conclude the paper with our final remarks and future work in Section 6.

2 Related work

In accordance with the research question stated previously, in this section we first focus on
a set of works which highlights the use of UML diagrams as a means to maintain source-
code. We conclude this section by presenting research work on model-based traceability,
since the use of traceability links might be a viable means to support the comprehension
and maintenance of source code.

2.1 UML and software maintenance
There are two literature reviews related to the topic that should be taken into account
(Fernandez-Saez et al. 2013; Zhi et al. 2015). First, Fernandez-Saez et al. (2013) present

a systematic mapping study (SMS) whose goal was to discover the empirical evidence
related to the use of UML diagrams in source-code maintenance and the maintenance of

@ Springer

Empir Software Eng

UML diagrams themselves. A total of 38 papers were found as a result of this SMS, includ-
ing 66 empirical studies, but only two of them were specifically focused on source-code
maintenance (Arisholm et al. 2006; Dzidek et al. 2008). Zhi et al. (2015) also report another
SMS but with a slightly different goal: the existing literature concerning software docu-
mentation cost, benefit and quality. Once again, the same two works (Arisholm et al. 2006;
Dzidek et al. 2008) are directly related to source-code maintenance. These two empiri-
cal studies will be explained below, together with another set of experiments which was
published after the performance of the two SMSs, and thus not included in them.

Using the aforementioned work as a basis, Dzidek et al. (2008) performed an experi-
ment with a group of 20 professionals. Half of them used UML documentation to catry
out a set of modifications on a web-based system developed in Java, while the other half
did not. This was done to assess whether providing UML documentation reduced the effort
required to correctly implement a set of tasks regarding changes and increased the func-
tional correctness and design quality of those changes. The results reported indicate that
UML users had to spend more time, especially when the documentation had to be updated.
However, the use of UML documentation was simultaneously always beneficial in terms of
functional correctness, since fewer faults were introduced into the software maintained. It
is also important to highlight that the no-UML group of participants had more problems as
regards understanding the most complex part of the system.

Arisholm et al. (2006) conducted two controlled experiments to assess whether UML
documentation helped to reduce the effort required to change the source-code of a soft-
ware system. The original experiment was conducted in Oslo, Norway, and the second in
Ottawa, Canada. The first experiment was conducted with 20 3rd year undergraduate stu-
dents, while the second was carried out with 4th year 78 undergraduate students. In both
these experiments, the independent variable was: using (or not using) UML documentation.
The participants’ performances were measured by considering the time required to perform
changes, excluding and including diagram modifications, correctness of these changes and
the quality of the changed design. The most important result obtained was: UML docu-
mentation does not provide an advantage as regards time, although it helps to improve the
correctness and quality achieved when solving the most complex tasks.

Leotta et al. (2013) present a pilot experiment carried out to relate the level of alignment
between UML documents and code and maintainers’ efficiency. A group of 21 undergrad-
uate students had to perform a set of 4 maintenance tasks on two systems using the Eclipse
framework while surfing the UML documents provided (sequence and class diagrams).
Although this was a pilot study, the results confirmed the general belief that a more aligned
documentation is of greater assistence during maintenance tasks.

Fernandez-Saez et al. (2015) report a family of experiments carried out at two different
universities in Italy and Spain. The aim of this study was to assess whether the origin of
UML diagrams (the design phase of a life-cycle or a reverse engineering technique) influ-
ences the maintenance of the corresponding source-code. A controlled experiment and two
replications of it were performed. The authors involved a total of 149 MSc students (cat-
egorized according to their ability, which was calculated using their course grades). These
students had to carry out adaptive and corrective maintenance tasks. The main finding of
the work was that participants with a higher ability achieved better scores when using the
diagrams with a forward design origin, while low ability participants got better scores when
using reverse engineered diagrams. The authors provide a possible explanation for this situation
by relating low levels of experience to difficulty in using (and/or understanding) UML diagrams.

The last experiment in this list Fernandez-Saez et al. (2016) reports a family of four
controlled experiments carried out by over 80 BSc and MSc students at three different uni-
versities in Italy, The Netherlands, and Spain. In this case, the goal was to analyze whether

@ Springer

Empir Software Eng

a high or a low level of detail in UML diagrams has an impact on the maintainability of
source-code during a model-centric development. The maintainability of the source-code
was measured by means of its understandability and modifiability, and the participants had
to answer a multiple choice questionnaire to show how they had understood the system, in
addition to performing a set of corrective maintenance tasks to show how it could be mod-
ified. The results of the family of experiments indicated that diagrams with a high level of
details improved the understandability of the system, while those with a low level of details
improved its modifiability. However, the authors indicate that, when attempting to replicate
the study, the results obtained seemed to be incoherent and to have no clear tendency. After a
thorough evaluation of this, they discovered that the diagrams had possibly been used incor-
rectly, or even not used at all, which would have led to the results obtained. They relate this
to the day-by-day situation in industry, when users’ false self-certainty may lead them not
to use (or not to use properly) the system documentation, and eventually find themselves
involved in unexpected and undesired situations as regards their maintenance duty.

Table 1 presents a summary of the main features of these papers. The columns in the
table are labeled as:

— Ref: contains the bibliographical reference to the paper.

— Goal: describes the objective of the experiment.

— Participants: presents the number of participants that took part in the experiment/s, plus
their type (students, professionals, etc.).

— Independent variable: describes the variable whose effect on the dependent variables is
to be studied. The values (treatments) of the independent variable are also presented.

— Dependent variables: presents the outcome variables, i.e., those affected by the changes
made to the independent variables.

— Tasks: describes the tasks to be performed by the participants as part of the experiment.

— Results: shows the main findings obtained in the experiment.

Some other empirical studies in industry related to the research question of this work
can also be found. For example, Scanniello et al. (2010) show the results of an explorative
survey carried out to investigate the state of practice as regards the use of UML in soft-
ware development and maintenance. At that time, UML appeared to be the most widely
used modeling option for software development and maintenance. In particular, 74% and
75% of the companies interviewed employed UML in the development and maintenance
phases, respectively. The authors did not ask the remaining survey respondents which mod-
eling languages were used as an alternative to UML. The companies interviewed stated that
maintenance operations are commonly performed by practitioners who do not have a vast
amount of experience. According to the study, an ordinary maintenance operation, such as
making certain corrective changes, needs an effort range of between 1 and 5 persons/hour.
These values are multiplied by 10 in the case of an extraordinary maintenance operation,
such as perfective or adaptive changes.

Fernandez-Saez et al. (2013) also present the preliminary findings of a case study
whose intention was to discover whether the investment in UML is justified by the ben-
efits (improved productivity and product quality) in software maintenance projects. They
consequently focus on discovering what the cost and the payback of using UML in a soft-
ware maintenance project are. They carried out a case study in a multinational company
with an IT department of 800-1000 employees. They collected data from the files shared by
the department and, principally, by interviewing the companys personnel (20 useful inter-
views). They eventually concluded that the employees reported several benefits of using
UML.: a better understanding of the problem domain, improved communication, a reduction in

@ Springer

Empir Software Eng

‘(souo
xo[dwos arow
Ay Aqeroadse)
191399 SUIQ)SAS
Ay} puejsiopun
0) syuedion
-ted padjoy pue
SSQUIOAIIOD [EUOT)
-ounj Jo SwIQ)
Ul [BIOIJOUd] SeM

((Fo19
‘soUO [RUISHIO A}
Suiueyo ‘somt
-[euonouny MU

‘ug1sop paSueydo
) jo Ajuenb
pue (senifeuon
-ounj Sunsixe
AP 01 uone[ar
oy} pue Jnejy
B IIM uonnjos
B JO SuoIssIu
-qns jo Ioquinu
A} JO SWId) ur)
sagueyd sy
Jo SSoUIdALI0d

‘so3ueyd asoy)
Jo Ayenb uSisop
pue SSOUOALIOD
[euonouny A
pasearour pue
‘syse} a8ueyo
Jo 10s ® juow
-oidwr - Apoariod

TN Suisn Inq Suippe) Ioraeyoq ‘SUOTBITJIpOUT 0) pa1mbar 11030
‘uonRIUAWNIOP S, WIQISAS ay weigerp Sur) paonpai
Sunepdn s1oyjo a3ueyo 01 souo -pnpout pue UONBIUAWNIOP
Ay uey) owmn mou uippe Io Surpnjoxa uoneIuAWNIOP TAN Surpia
arowr juads syued sosse[d SunsIxa ‘sogueyd wojrad TN (you s1odojorap -oxd oURYM
-ronred TAN oy SulkJIpoN 0] uoye} owi], I10) Suisn reuorssojoxd (g Surssassy (8007) e 10 Yopizg
‘syse) xordwod
jsowr 9y} SuIA[oS ‘ug1sop paSueyo
uaym paAdyde o Jo Aenb pue "WAISAS aIBMIJOS
Anenb pue ssou sagueyd asayy B JO 9p02-30IN0S
-1091109 a Jo SSOUIORII0Dd oy oSueyo 01
aaoxdwr oy sdjoy ‘SuUOnedIJIpOwW paxmbar 110130
31 ySnoype ‘own weIserp Sur oyl oonpar 0}
spre3ar se o3e} "pasn SWoISAS -pojout pue padjey pepraoid
-ueApe ue apraoxd Ay 01 pajeal Surpnjoxa uoneIUAWNIOP SyuapMIS (1.4 Ut UuonLUWNI0P
jou S0p uone) suonerodo erd ‘soSueyo woyred TAN (Jou pue pig) aenpeid TINN Y3 Ioylaym
-uauIndop TINN -A9S SuruIojIod 0] uoyel} Quwi], 10) Suisn -Iopun 8/ + (0T Surssassy (9007) 'Te 32 wjoysLy
So[qeLIeA J[qeLreA
Snsoy syse], juapuadog Juapuadopuy syuedronreq [eon REN|

soInjeay sjuowradxa Jo Arewrwing | J[qeL,

pringer

NS

Empir Software Eng

“Kouapuay 1eso
Ou pey pue juo)
-stsuoour A[irej
dIoMm SI[NSAI 3sAY)

‘SSO[OYLIDAIN
1 urejurewr o)
padjoy [1e19p

JO [9A9] MmO ®©
PIM IS0} AIYMm
Joneq wa)sAs
Ay puelsiopun
01 sjuedronred
padjoy [1e19p
Jo 1eA9] ySmy
e qm swerd
-elp ‘Apuoreddy

's19sN

pasuarradxa
arow sdjoy NN
asnedaq Ajqrssod
‘urguo uS1sop
pIemIioy B m
swreI3erp Bl
Sursn s21008 19}
-19q paaAayoe
Anqe 1oy3iy e
s syuedionieq

5 Nl
QoueuUIBW FUI
-Imp [nydjoy a1ow
ST UONBIUAWNIOP
paudie arow Y

“(Kiqeripour)
sysel 0URUI)
-urewr oAnoopiad
€ Surwroyrod
pue (AjIqepuels
-Iapun) suonsanb

oo10yd ddnnu
€ Sutomsuy
S Bl
QouBUAIUTRW
JATIOOIIOD puE
aandepe Sur
-papout syse)

JURIRJJIP OAL

‘WISAS B UO SYSB)
QouBUdIUIBW INOJ
Jo uonnodxy

"Koudrongyo
PUB SSQUIANIIYJ
1oy} Aq painseawr
)0q ‘9p02-90IN0S

oy jo Amiqe
-pueisiopun pue
AiqeyIpoiN
“Kouaronyyo

_uﬁﬁ mw@ﬂu\wﬁ\u@.ﬁw@
s Aq painseswr
‘Aqeureurews
9p00-901N0§

'syse)
Qoueudurew Jul
-uojrad spregar
s Koudroryg

(morg
10 ysry) swerd
-BIp TINN 9 Jo
[re19p JO [9A9T]

(pa1oaurua
981041 10
pauSiseop plem
-10J) sweIderp
gy jo wsuQ

(ss9[pue 210w
soneA) juowuSife
uone)-uawWndoq

Sju”pmIs
OSIN 9T +9S9 §9

munoﬂ:\zw
OSIN 8L+16+0T

sjuapnys
Jrenpesdiopun [g

Juawdoroaap
SLNUII-[pOW
e Suunp 9pod

-90IN0s J0
Aniqeureyurew
Ay uo 3joedwr

s)1 Suppoayd pue
sweiselp TINN
ur [1e)op JO [9A9]
oy Surzdeuy

9p0I-32IN0S

Surpuodsar

-100 ap Jo
QourUSIUTEWT

oy SQOUQ
-npjur sweIgerp

TANN Jo uid
-0 9y} IdyyYMm

Sunesnsaauf

PRliclaline]

SIourejurewt
pue 9pod> pue
S)UAWINJ0P TIAN
UIMIdq Judw
-usiEe Jo [oAd]
Y Suneoy

(9107) ‘Te 10 ZovS-ZopuBuIa]

(ST0T) T8 19 Z9BS-ZopupuId|

(€107) Te 310 B0

(panunuoo)

1 9IqBL

pringer

a's

Empir Software Eng

software defects, an improvement to the quality and a reduction in the software maintenance
effort.

Garousi et al. (2013) present a multi-method empirical approach, and include a survey, a
case study and some action-research in their proposal. A company providing satellite nav-
igation system products was changing its software development processes and intended to
measure which key factors were impacting on documentation usage (information sources,
life-cycle phase, document type, roles, degree of experience, and patterns of usage) and
which attributes were affecting the quality of the documentation. An exploratory survey was
conducted with 25 employees to assess the aforementioned factors and attributes. Its results
were reused in a case study during which the company data was employed, and the con-
clusion was reached that the usage of documentation differed according to the purpose for
which it was used, e.g., documentation was more frequently used for development purposes
than for maintenance purposes. Moreover, documentation the up-to-date-ness, accuracy and
completeness of document artifacts were identified as the most important and relevant qual-
ity attributes as regards improving documentation efficiency. Finally, all these results were
used in a set of action-research cycles for a continuous improvement of the company’s
documentation efficiency.

Finally, Fernandez-Saez et al. (2015) present the findings of a survey on the use of UML
in software maintenance. A total of 178 professionals from 12 different countries took
part in this survey. The main objectives of this survey can be summarized as follows: (i)
to explore the extent to which UML diagrams are actually used in industry (59% of the
answers indicated the use of a graphical notation, 43% UML), (ii) to acknowledge which
was the most effective UML diagram for software maintenance (as expected, class, use case,
sequence and activity diagrams), (iii) to discover what the perceived benefits of using UML
were (less time needed for a better understanding and, thus, an improved defect detection),
and (iv) to contextualize what kind of companies used UML documentation during software
maintenance (larger teams seem to use UML more frequently).

To conclude, only a few evaluations of the benefits derived from the use of UML through-
out the whole software development life cycle have been reported (Anda et al. 2006). This
lack is even more evident in the software maintenance phase with regard to the benefits of
employing UML models in source-code comprehensibility and modifiability. In addition,
results sometimes seem to be contradictory or do not confirm the general belief, i.e., the
UML documentation is not always beneficial to source-code comprehension/maintenance.
In a few cases, it has been observed that UML documentation does not provide an advan-
tage as regards time, while it helps to improve the correctness and quality achieved when
solving complex tasks (e.g., Arisholm et al. 2006). In some other cases, UML is benefi-
cial to source-code maintenance only if developers have a higher ability and/or the models
have some specific characteristics (e.g., Fernandez-Saez 2015, 2016, Leotta et al. 2013). To
try making things clearer, we present the results of long-term research conducted to study
whether or not UML-based models (produced in both the requirements and analysis phases)
aid source-code comprehensibility. In particular, we aggregate and synthesize the outcomes
of 12 controlled experiments in different experimental contexts and on different sites with
participants who had different levels of expertise. A total of 333 observations were obtained
from these experiments. At the best of our knowledge, our study is currently the largest in
the literature concerning the UML and its effect on source-code maintenance.

2.2 Model-based traceability

Traceability can be considered as an important related concept, since the comprehension
of source code supported by the use of models is affected by the possibility of implic-

@ Springer

Empir Software Eng

itly identifying relationships between source code and software models. When traceability
information is explicitly documented in addition to the models, it can help developers to
comprehend source code. In the following, we present related work focussed on this matter.
For example, Lehnert et al. (2013) combine impact analysis, multi-perspective modeling,
and horizontal traceability analysis to support the specification of models and the develop-
ment of source code and test cases. They propose a unified meta-model approach that can
be supplied by the Eclipse Modeling Framework (EMF) (2012) and a centralized model
repository. The approach makes it possible to analyze the dependencies between software
artifacts according to the type of change which is applied to them. The idea is to verify the
interplay of change operations and dependency relations between models and code with the
aim of identifying the propagation of further changes.

Hammad et al. (2011) propose an approach with which to automatically determine
whether a change in the source code affects the design of the system (i.e., UML class dia-
grams). The aim of this approach is to maintain consistency between developed code and
models by exploiting code-to-design traceability when the source code evolves. The pro-
posed approach, along with the prototype implemented, was assessed by performing a case
study based on the commits extracted from four open source projects during a three years
period. The results revealed that most of the code changes do not impact on the software
models. Furthermore, these commits regard a smaller number of changed files and less lines
of code with regard to commits that impact on software models. Another interesting result
is that most bug fixes do not impact design.

Settimi et al. (2004) assess the effectiveness of information retrieval techniques as
regards tracing new and changed requirements to UML artifacts, code, and test cases. The
authors summarize the most important result from their research as follows: tracing to UML
elements provides a higher perspective of the proposed change than would be possible if
links were generated directly to the code and supports the growing trend toward Model
Driven Development. One possible implication is that this kind of link might reduce the
effort required to analyze the impact of the changes.

Cariou et al. (2002) present an approach that focuses on object collaboration. This is rec-
ognized as an important building block for structuring object-oriented design in a distributed
context. In an attempt to deal with the problem of the deterioration of the collaboration
information during the detailed design process, a process and an architecture is proposed to
preserve object collaboration information, from the analysis to design and implementation.
The idea is to employ UML collaboration diagrams, with the addition of OCL constraints
that follow specific rules to suit component specification requirements. This specification
can be successively transformed into various low-level implementation designs depending
on non-functional constraints by means of a refinement process.

Pavalkis et al. (2013) extend UML by defining a model-driven domain-specific lan-
guage engine in order to manage traceability schemas and traceability analysis means. The
authors specifically propose a framework that can be used to derive properties in order to
trace project artifacts. The authors run several case studies to show how the framework
can be used to adapt their solution to a particular development method and domain-
specific language in a development process, and to automate the maintenance of traceability
relations.

The proposal by Tang et al. (2007) is focused on the understanding of design rationale to
support the detection of inconsistencies, omissions, and conflicts in an architecture design.
The model incorporates design rationale, design objects and their relationships, and trace-
ability methods are applied so as to change impact analysis and root cause analysis. The
UML notation is used to represent the AREL model, which is an acyclic graph that relates

@ Springer

Empir Software Eng

elements of the architecture to their rationale by exploiting the ARtrace directional link
(namely, UML stereotyped association) (Tang et al. 2007).

Pavalkis et al. (2013) propose an approach for improving vertical traceability of UML
models, thus eliminating the additional complexity involved in defining and maintaining
traceability information in the software projects. Indeed, traceability information is not
statically managed and memorized, but the use of derived properties allows the dynamic
calculation of this information, which is then analyzed using dedicated and already existing
tool-specific means. The application of the approach to a particular development process
has shown that it allows the completeness of the project to be validated and the impact of
changes to be analyzed, without affecting issues related to the management of traceability
information.

A number of approaches has been proposed in the context of model-based traceability.
Often the validity of these approaches has been empirical assessed through case studies,
while the use of controlled experiments with participants seems marginal, especially to
study the effect of model-based traceability on source-code maintenance.

3 Background

As the number of empirical studies grows, the need to aggregate evidence from multi-
ple primary empirical studies (e.g., experiments) increases (Wohlin et al. 2012). There
are two main reasons for aggregating evidence. Firstly, new research should always take
existing knowledge into consideration as its starting point. That is, reviews summarizing
the outcomes of various intervention trials are an efficient method by which to obtain the
“bottom line” regarding what works and what does not. Secondly, primary empirical stud-
ies may together provide answers to research questions, when these studies alone are not
sufficient to answer these research questions. In Section 3.1, we first briefly introduce
strategies that can be used to summarize and synthesize outcomes from different empirical
studies/experiments. When primary studies are synthesized using statistical methods (i.e.,
using a meta-analysis), it is crucial to verify whether or not these studies are heterogeneous
(Pickard et al. 1998). In Sections 3.2 and 3.3, we present some background on how to deal
with heterogeneity in meta-analysis studies. Finally, we present the process we have defined
to deal with heterogeneity.

3.1 Aggregating results from primary studies

The collection, synthesis, and review of empirical evidence must comply with scientific
standards. There are several strategies with which to summarize and synthesize outcomes
from different empirical studies/experiments. For example, a systematic literature review is
a means used to collect and synthesize empirical evidence from different empirical studies
(Kitchenham and Charters 2007). A systematic literature review is referred to as a secondary
study, while the empirical studies in such a review are referred to as primary studies. A
systematic literature review has a research question, similar to that in primary studies. If the
research question is more general (or if the field of research is less explored) a mapping
study may be carried out.

When a set of empirical studies on a topic is collected, synthesis or aggregation takes
place. A synthesis based on statistical methods is referred to as a meta-analysis (Wohlin et al.
2012). It can be applied to analyze the outcomes of several dependent and/or independent
studies/experiments. The most important advantage of using a meta-analysis is that this kind

@ Springer

Empir Software Eng

of secondary study makes it possible to achieve a higher statistical power for the variable of
interest than primary studies. Although there is no accepted minimum number of primary
studies in a meta-analysis, a minimum of 10 primary studies can be considered acceptable
(Pickard et al. 1998).

3.2 Assessing heterogeneity

Studies may vary. In fact, the assumption that the studies are all representative samples
of the overall true effect and only differ owing to sampling error is not always valid. In
this situation, the studies are said to be heterogeneous (Pickard et al. 1998). It is useful
to distinguish between different types of heterogeneity. According to Higgins and Green
(2008), we can distinguish the following kinds of heterogeneity: clinical, methodological,
and statistical. Variability in the participants, interventions, and outcomes studied may be
described as clinical heterogeneity. Variability in study design and risk of bias may be
described as methodological heterogeneity. Finally, variability in the intervention effects
being evaluated in the different studies is known as statistical heterogeneity. This kind of
heterogeneity can be considered a consequence of clinical heterogeneity or methodological
heterogeneity, or both, among the primary studies. In the following part of this section we
will focus on statistical heterogeneity and we refer to it simply as heterogeneity. This choice
might affect the results of our investigation (see the discussion on the threats to validity in
Section 5.4.4).

In a meta-analysis, the means usually employed to assess whether a set of single studies
is heterogenous the Cochran’s Q test (Pickard et al. 1998). This test measures the deviation
of observed effect sizes from an underlying overall effect size. The most frequently used
cut-off point is 0.1. If the value is lower than this threshold, we can reject the null hypothe-
sis (i.e., the primary studies are not heterogeneous) and we can then assume that studies are
heterogeneous. The Cochran’s Q test informs us only about the presence of heterogeneity,
but it does not report on the extent of that heterogeneity (Huedo-Medina et al. 2006). Possi-
ble measures of heterogeneity are I-squared and tau-squared. The I-squared measure is the
percentage of total variation across experiments that is owing to heterogeneity rather than
chance. Thresholds for the interpretation of I-squared values can be misleading because the
importance of inconsistency depends on two main factors: (i) magnitude and direction of
effects and (ii) strength of evidence for heterogeneity (e.g., p-value from the chi-squared
test, or a confidence interval for the I-squared measure). A guide to the interpretation of
I-squared values is based on the intervals suggested by Higgins and Green (2008):

0% to 40%: heterogeneity might not be important;

30% to 60%: a moderate heterogeneity may be present among the primary studies;
50% to 90%: a substantial heterogeneity may be present among the primary studies;
75% to 100%: considerable heterogeneity may be present among the primary studies.

Tau-squared is an absolute measure of heterogeneity. It is a measure of the standard
deviation of effect sizes across the experiments. Values greater than 1 indicate that primary
studies are heterogeneous (Pickard et al. 1998).

Huedo-Medina et al. (2006) stated that I squared should be used as a complement to
the Cochran’s Q test. Since both Tau-squared and I-squared are measures of heterogeneity,
these measures can be considered both as a complement to the Cochran’s Q test. That is,
the heterogeneity of the primary studies can be measured by either (or both) Tau-squared
or I-squared if the Cochran’s Q test rejects the null hypothesis that these studies are not
heterogeneous.

@ Springer

Empir Software Eng

If studies are not heterogeneous (i.e., they are homogeneous), they should be combined in

a meta-analysis using a fixed effect model. This model assumes that the size of the treatment
effect is the same (fixed) across all the experiments.

3.3 Dealing with heterogeneity

A number of options are available if (statistical) heterogeneity is identified among a group
of primary studies that would otherwise be considered suitable for a meta-analysis. For
example, Higgins and Green (2008) suggested:

1.

Check again that the data are correct. Severe heterogeneity can indicate that data have
been incorrectly extracted and/or used. For example, if standard errors have mistakenly
been entered as standard deviations for continuous outcomes (Higgins and Green 2008).
Do not do a meta-analysis. If there is considerable variation in results, and particularly
if there is inconsistency in the direction of the effect, it may be misleading to quote an
average value for the effect.

Explore heterogeneity. The goal is to determine the causes of heterogeneity. This is
problematic since there are often many characteristics that vary across primary studies
from which one may choose. Heterogeneity may be explored by conducting sub-group
analyzes. Each of these groups should have a minimum of 4 studies/experiments (Fu
et al. 2011). Explorations of heterogeneity can at best lead to the generation of hypothe-
ses. They should be interpreted with caution. Investigations of heterogeneity when there
are very few studies are of questionable value.

Ignore heterogeneity. Heterogeneity can be ignored and a fixed effect meta-analyzes
can be performed. The pooled effect estimate from a fixed effect meta-analysis is nor-
mally interpreted as being the best estimate of the intervention effect. However, the
existence of heterogeneity suggests that there may not be a single intervention effect
but rather a distribution of intervention effects. The pooled fixed effect estimate may be
thus an intervention effect that does not actually exist in any population, and, therefore,
have a confidence interval that is both meaningless and too narrow.

Perform a random effects meta-analysis. A random effects meta-analysis may be used
to incorporate heterogeneity among primary studies. This is not a substitute for a thor-
ough investigation of heterogeneity. It should be intended primarily for heterogeneity
that cannot be explained.

Change the effect measure. Heterogeneity may be an artificial consequence of an inap-
propriate choice of the effect measure (dependent variable). Furthermore, the choice
of the effect measure for dichotomous outcomes (odds ratio, relative risk, or risk dif-
ference) may affect the degree of heterogeneity among results. When control group
risks vary, homogeneous odds ratios (or risk ratios) could lead to heterogeneous risk
differences (and vice versa).

Exclude studies. Heterogeneity may be owing to the presence of one or two outlying
studies. That is, the results of these studies could conflict with the results of the remain-
ing studies. In general, it is unwise to exclude studies on the basis of their results. This
may introduce bias into the meta-analysis results. However, if an obvious reason for
the outlying result is apparent, the study might be removed with more confidence. It is
advisable to perform analyzes both with and without outlying studies as part of a sen-
sitivity analysis. Whenever possible, potential sources of diversity that might lead to
heterogeneity should be specified in the experimental protocol. When excluding stud-
ies, a researcher should also take into consideration the number of studies to be then
considered in the meta-analysis, thus avoiding losing the representativeness of results.

@ Springer

Empir Software Eng

3.4 A process based approach to deal with heterogeneity

We employed the strategies by Higgins and Green (2008) as a basis to define a process
with which to better deal with (devised statistical) heterogeneity in meta-analysis studies.
Figure 1 shows this process as an activity diagram with object flow, where the activities are
the phases of the process and the objects represent the input/output to these phases. In partic-
ular, the process first suggests checking data from individual experiments to be sure that they
are correct (CheckingData). This is performed before checking that the secondary studies
are heterogenous. The phasse in charge of assessing whether secondary studies are statisti-
cally heterogenous is AssessingHeterogeneity. If the secondary studies are not heterogenous,
a meta-analysis will take place in PerformingFixedEffectModel. If the secondary studies are
heterogeneous, the researcher can decide not carry out a meta-analysis (the flow is placed in
the end-node) or to go ahead with the process. In the latter case, the researcher can decide
whether or not to ignore heterogeneity. Ignoring heterogeneity implies the execution of Per-
SformingFixedEffectModel. On the other hand, the researcher can decide whether or not to
incorporate the heterogeneity into a meta-analysis. If the researcher decides to incorporate
the heterogeneity, the meta-analysis will take place by executing PerformingRandomEf-
fectsModel. That is, a random effects model will be applied to all the primary studies. It is
also possible to either explore or not explore heterogeneity. If heterogeneity is not explored,
the researcher can decide to choose a different effect measure (or dependent variable) in
order to aggregate the results in a meta-analysis (ChangingEffectMeasure). There are two
ways in which to carry out an exploring: by excluding one or two outlying primary studies
(ExcludingStudies) or by identifying sub-groups of experiments (IdentifyingSubGroups). In
the case of the researcher excluding one or two outlying studies, meta-analysis takes place
with a single group of studies. This implies that the process in Fig. 1 is instantiated only
once. If sub-groups of experiments are identified, the process is instantiated for each of
these sub-groups.

In order to show the different instances! of the process shown in Fig. 1, we used regular
expressions in which the symbols are those used to label the phases of the process shown
in Fig. 1: a, b, ¢, d, e, f, and g. For example, the label for CheckingData is a. We also
considered the empty symbol (i.e., €). The regular expression defined is shown as follows:

ab((eab)*(gb)*(fb)*)*(cld|e)

We used regular expressions to provide a more compact representation of the instances of
this process. In particular, our solution makes it possible to establish a clear link between the
instances in our process and the sentences in the language described by means of the regular
expression shown previously. We shall also use the sentences from the regular expression
to facilitate our discussion on how we dealt with heterogeneity in the study presented in
this paper. For example, the sentence abc means that we checked data, assessed hetero-
geneity, and performed a fixed effect model to aggregate results. However, our compact
representation does not make it evident whether we execute PerformingFixed EffectModel
because heterogeneity is ignored or because the experiments are homogeneous. We deal
with this ambiguity by underlining sentences in the regular expression defined to indicate
that the experiments are homogeneous. The sentence abc, therefore, indicates that the exper-
iments are heterogeneous, while abc indicates that they are homogeneous. In both cases the

! An instance of a process is a sequence of the activities/phases.

@ Springer

Empir Software Eng

!

:Experiments

:Experiments (@) CheckingData

‘ :Experiments* qu) AssessingHeterogeneity>
((f) ExcludingStudies) l

Heterogeneous?

qg) IdentifyingSubGroups)

NO

PerformingMeta

Analysis?
YES Experiments
Cleaning?
Ignoring
Heterogeneity?
e (c) PerformingFixedEfiectModel
Exploring Incorporating
> Heterogeneity? Heterogeneity?
YES
€) ChangingEffectMeasure
q) gng) @) PerformingRandomEffectsModel

Fig. 1 The process defined to deal with statistical heterogeneity, in which each phase has a label (i.e., a, b,
¢, d, e, f, or g) associated with it. This allows a rapid reference to the phases in the process

sequences in which the phases are performed is: CheckingData, AssessingHeterogeneity,
and PerformingFixed EffectModel.

4 Our long-term investigation

In a survey we conducted in 2009 (Scanniello et al. 2010), the main results suggested that,
in order to deal with software maintenance and evolution tasks, many of the companies
interviewed use UML diagrams produced in the requirements analysis® phase and, in a few
cases, those produced in the design’ phase. The most frequently used UML diagrams were:
use case, class, and sequence diagrams. Another result of this survey was: maintenance
operations were performed by practitioners with a few years of experience in software devel-

2It is also called requirements engineering process and it is the process of determining user expectations (i.e.,
requirements) as regards a new or modified product.

31t maps the requirements onto the software architecture that defines the components, their interfaces and
behaviors. The design document describes a plan with which to implement the requirements.

@ Springer

Empir Software Eng

opment and maintenance and maintenance operations were supported by models produced
in the analysis and design phases. To this end, companies generally employ developers with a
Bachelor’s or Master’s degree in Computer Science and with between 1 and 5 years’ experience.

The main results of the aforementioned industrial survey were used as a basis to begin the

long-term research shown in this paper. We quantitatively studied to what extent developers
understand source code when they were provided with source code alone or with source
code and UML software models together. Our research consisted of the following two main
directions, which were carried out in parallel:

In the first direction of our long-term research, we studied the comprehension of source
code when it was complemented with analysis models (i.e., models produced in the
requirements engineering process) based on the UML notation: use case diagrams,
class diagrams, and sequence diagrams. In particular, use case diagrams and use cases
(textual description of the use cases in the use case diagrams) were employed to repre-
sent functional requirements. These requirements are represented with successful use
cases. The participants were also given exceptional and/or boundary conditions. Class
diagrams were used to abstract the objects from the problem domain (i.e., the object
or conceptual model), while sequence diagrams (also produced in the requirements
engineering phase) were used to model the dynamic and/or functional behavior of the
software (Bruegge and Dutoit 2003). First, we conducted a pilot study with Computer
Science Bachelor’s degree students at the University of Basilicata. The results of this
pilot study were presented in Gravino et al. (2010) and can be summarized as follows:
the use of analysis models does not significantly improve the comprehension of source-
code. We successively conducted a family of four controlled experiments on this subject
(Scanniello et al. 2014), the goal of which was to strengthen the findings obtained in
the pilot study. The experiments were carried out with students and practitioners from
Italy and Spain who had different abilities and levels of experience with the UML.
The results attained indicated that UML analysis models did not appear to improve
source-code comprehensibility, thus confirming the results from the pilot study.

In the second direction, we conducted two kinds of controlled experiments. The main
goal of the second direction of our research was to study the comprehension of source
code when it was complemented with design models (i.e., models produced in the
design phase) based on the UML. In particular, the two kinds of controlled experiments
were conducted in parallel and pursued the following main goals:

(i) Assessing the potential benefits derived from the use of UML class and sequence
diagrams (both produced in the design phase) as regards the comprehension
of object-oriented source-code (Gravino et al. 2015). Two experiments with
Computer Science Bachelor’s and Master’s degree students were, therefore, con-
ducted. The data analysis revealed that those participants with more experience of
the UML and computer programming (i.e., Master’s degree students) benefitted
from the use of UML models produced in the design phase (from here on UML
design models, also).

(i) Investigating whether providing source code with UML class diagrams
used to graphically document design-pattern instances* improves source-code

4Design-pattern instances can be seen as a micro-architecture that developers copy and adapt to their par-
ticular designs in order to solve the recurrent problem described by the design pattern (Bruegge and Dutoit
2003; Gamma et al. 1995).

@ Springer

Empir Software Eng

comprehensibility. This implies that multiple diagrams refer to the same piece of
software and each of them can be seen as an excerpt of the entire class diagram
of that piece of software. This is the main difference between the aspects (i) and
(ii). We conducted an experiment with Master’s degree students (Scanniello et al.
2010). The control group of this experiment comprised students who were given
source code alone without any reference to the design-pattern instances contained
in it. We carried out four successive controlled experiments with participants
who had different experience as regards programming and software modeling
(i.e., Bachelor’s, Master’s, and PhD students and practitioners) (Scanniello et al.
2015). The effect of textually documented design-pattern instances was also stud-
ied. Data regarding this kind of documentation was clearly not considered in the
study presented in this paper, since the UML was not used.

All 12 experiments (primary studies) briefly described above and summarized in Table 2
were carried out by following the recommendations provided in Juristo and Moreno (2001),
Kitchenham et al. (2002), Wohlin et al. (2012). In this section, we summarize the planning
and the operation phases of these experiments and provide the most salient information
concerning the study presented in this paper.

The experiments are reported according to the guidelines suggested by Jedlitschka
et al. (2008). For replication purposes, we have made the raw data regarding of all our
experiments available on the web.’

4.1 Goal

According to the Goal Question Metrics template (Basili and Rombach 1988), the goal
of the study presented in this paper is: fo analyze the use of UML analysis and design
models for the purpose of understanding their utility with respect to the comprehensibility
of object-oriented source code from the point of view of the software engineer in the context
of students and practitioners.

4.2 Context selection

We used different software systems and UML diagrams in our study. The systems used were
those described in the fifth column of Table 2, while the diagrams are those shown in the
second column of this table. All the experimental objects were desktop applications imple-
mented in Java. We used the Music Shop® and Theater Ticket Reservation’ applications.
Moreover, their models were created in a course on Advanced Object-Oriented Program-
ming (AOOP). The lecturer of this course was involved in neither the study presented here
nor those shown in Table 2, which allowed us to mitigate possible threats to construct valid-
ity (Experimenters’ Expectancies). We used the source code that the lecturer selected from

Swww2.unibas.it/gscanniello/SourceCodeComprMetaAnalysis/data.xlsx

SThis is a software system that is used to sell and manage CDs/DVDs in a music shop. The feature search for
a singer was used in the experiments: the user inserts a string (e.g., the surname of the singer), and the system
then searches for all the singers that satisfy the search criterion and shows them in a list of the associated
information.

"This is a software system with which to book and buy theater tickets. The feature buy a theater ticket was
used in the experiments: the system shows the list of the available tickets for a given theater and performance,
and the user then chooses the ticket and inserts data about the spectator.

@ Springer

www2.unibas.it/gscanniello/SourceCodeComprMetaAnalysis/data.xlsx

Empir Software Eng

among the software systems developed by the students on the AOOP course. We did not
have any control over the selection process. However, we reviewed the documentation and
models to find possible issues. It was not necessary make any considerable modifications.
We only removed possible typographical errors and indented source code when appropri-
ate. Source-code comments were removed to avoid their presence having any effect on the
results. That is, the effect of source-code comments could have been confused (or could
have interacted) with the main factor being studied (see Section 5.4.2). The students that
developed the experimental objects did not participate in the experiments.

In order to deal with the threat to external validity, we also used open-source soft-
ware. We selected a chunk (i.e., a vertical slice) of JHotDraw v5.1. This chunk included:
10 instances of design patterns in total — two instances for the State design pattern and
one instance for the following design patterns: Adapter, Strategy, Decorator, Composite,
Observer, Command, Template Method, and Prototype — and the design patterns con-
sidered were well-known and widely adopted (Gamma et al. 1995). We documented the
design-pattern instances present in the source code using both the JHotDraw documentation
and the PMARt dataset (Guéhéneuc 2007). This allowed us to document both intentional
and unintentional design-pattern instances. Although traceability links are important as
regards identifying relationships between source code and software models (see Section
2.2), we avoided providing them to the participants. The rationale for this was that mak-
ing this information available to a developer could affect source-code comprehensibility
in an undesirable way, i.e., concealing the effect of the use of software models on source-
code comprehension. However, this design choice poses an additional threat to external
validity, since traceability links could be available (e.g., post-facto) to support program
comprehension tasks in the software industry (Antoniol et al. 2002).

We conducted all the experiments, with the exception of DePra (see Table 2), in research
laboratories. DePra was conducted at the participants’ companies. All the experiments were
conducted under controlled conditions. The most participants’ salient characteristics are
summarized in Table 2 (third column). Participation in the experiments was on a voluntary
basis. The participants were not paid. Each participant took part in only one experiment.
Further information on the experimental objects and their selection process, along with the
characteristics of the participants in the experiments, can be found in Gravino et al. (2015),
Gravino et al. (2010), Scanniello et al. (2014), Scanniello et al. (2010), Scanniello et al.
(2015).

4.3 Selection of variables

In each experiment, we considered those participants who were given source code alone as
comprising the control group, while the treatment group comprised students who were given
source code with software models based on the UML. The independent variable (from here
on manipulated factor or main factor, also) considered in each primary study was, therefore,
method. This variable is nominal and can assume the following two values: models (UML-
based models and source code without comments) and source code (source code without
comments).
The effect of the manipulated factor was analyzed on the following chosen constructs:

— Comprehension. This denotes the comprehension level of the source code achieved by
a software engineer.

— Completion time. This denotes the time a software engineer takes to accomplish a
comprehension task.

@ Springer

Empir Software Eng

We used questionnaires to assess source-code comprehensibility. The correctness of the
answers provided to these questionnaires was quantitatively evaluated by the F-measure,
i.e., it was used to measure the comprehension variable and then estimate the comprehension
construct. F-measure is computed as the overall balanced harmonic mean of precision and
recall of the answers given to the questions. Answers were provided in the form of string
items (e.g., a sequence of method/class names and/or the text messages shown to a user) and
compared with the expected ones. F-measure values range in between 0 and 1. The higher
the value of this variable, the greater the comprehensibility of source-code was.

We estimated the completion time construct using the overall time (expressed in minutes)
taken to answer a comprehension questionnaire. The higher the value of time, the greater
the effort® required to accomplish a comprehension task.

4.4 Design

We used different kinds of designs in the experiments. As shown in Table 2, we used
crossover designs in DeMscExpl, AnMscExpl, AnMscExp2, AnMscExp3, and AnPra. In
the remaining experiments, we adopted the one-factor-with two treatments design (Wohlin
et al. 2012). This kind of experimental does not suffer from the presence of a possible carry-
over effect,? while the crossover design may do so. It is worth noting that the design of some
experiments was randomized, while in others we used the participants’ ability as a block-
ing factor (see Table 2 for details). When applicable, randomization allowed us to mitigate
carry-over that we had already analyzed in the primary studies. In all the experiments, the
participants accomplished the task alone, that is, they did not work in a group to accomplish
a comprehension task.

4.5 Experimental tasks and operation

All the participants were asked to fill in a comprehension questionnaire and a post-
experiment survey questionnaire. The composition of both these questionnaires depended
on the experiment and the tasks. We formulated the questions in the comprehension ques-
tionnaires using a similar form/schema. In addition, these questions were formulated to
assess comprehension of the source code that we believed to be more relevant and con-
cerned understanding concepts in this source code, which (as suggested by Sillitto et al.
2008) involved multiple relationships and software entities. Further details on the experi-
mental tasks and the experimental procedure can be found in Gravino et al. (2015), Gravino
et al. (2010), Scanniello et al. (2014), Scanniello et al. (2010), Scanniello et al. (2015).

4.6 Analysis procedure
Th results of a meta-analysis are commonly displayed graphically as “forest plots” (Ried

2008). This kind of pictorial representation provides a quick and easy means to illustrate the
relative strength of treatment effects. Forest plots display point estimates and confidence

8The time was an approximation of comprehension effort. This complies with the ISO/IEC 9126 standard
ISO (1991) (and subsequent versions), in which effort is the productive time associated with a specific project
task.

°Tf a participant is tested first under the experimental condition A and then under the experimental condition
B, she/he could potentially perform better or worse under condition B.

@ Springer

Empir Software Eng

JuBdIJIUSIS
A[reonsne)s
jou ST Q0Ud
PP SYyL
pasn s[opowr
uoym uoYe)
owrn QIO

pasn sfopowr
uoyM UOISUdY
-ardwoo 1010g

‘JuedjIugIs
A[reonsnels st
Q0URIAPIP QYT

sjuopn)s
90139p S J9ISBA
8ok puodas 9

(STOT Te 30 outaeIn) [dxgIsNeQ

Juedyugis juedLjIugIs
A[reonsnels A[Teonsnels paziwopuey sjuopnIs 99139p
ST Q0uQIQJ jou SI U -ugisop s Jo[oydeqg
-Jip L -IPIp QYL IOAOSSOI) - A puz 9] douanbas pue sse[) (S10T 'Te 19 oulAeIn) [dxHgIsgaq
BAR[UT
payusworduur
waIsks uon
-BAIOSOY
YOI, IR
QUL e Jo
Junys A4
BAR[ur
payuowaduwur
wa)sAs orem pazrwopuey
juedyIugis A[[eo -jos doys - sjusunean sjuapnys 32133p Jouanbas
-snels jou St JISNA Jo alow Im s Jo[aydeg pue ‘ssep
PAIOPISUOD JON QJURIJIp UL unyd v -10)9eJ-2UQ) - reak pig 9] ‘osed 98] (010 'Te 12 OUIABID) dSqUY
i uonadrdwo) uorsudyardwo)
SISy $102[qO "dxg udisoq puny pue sjuedronred Jo roquinN sweIdeIp TN juowLredxyg

Swawadxs oy Jo Arewung g 3[qe],

pringer

a's

Empir Software Eng

pasn

S[opow UAYM
uoyEB) QW) ST
JuedyIugis
A[reonsneys st
QOURIRYJIP QYT

PaIaPISU0d JON

pajuasaid jou
uorsuayrdwod
Jo sIsA[euy
juediyIuSIs A[[eo
-nspels jou st
QOURIAIJIP oYL,
pasn

Jou s[opow
udyM UOISUdY
-oxdwod 1oneg
JuedJIugIs
A[reonsnels st
QOURIAIJIP oYL
JuedjIusIs A[[eo
-nspe)s jou st
QOUAIPIP Y],

juedrjIuSIs A[[ed
-nsnels jou st
QOUAIJIP Y],

PaJoOas sem
QIeM)JOS AINUQ
Ay Jo (da1r8
[eONIRA D)
yunyo y -eaef
ur pajuawd[duur
SI0JIpo SuImeIp

pamonns

10 JIom
-ourey somydeas
[euoISUSWIP
-om) e
{MBICIOH[

s1ouonnoeld
I0J 10108]
Supporq - se
Qououadxe Jur
-JIom JO SIBOX
- sjuopmis I0J
J0108) 3uryooq

se Aqy - -
sjuauealr)
10w Qs
-10108J-3UQ)-
10108]

Sunyoorq se An
-Iqy - uisep
JOAOSSOI) -

sjuapn)s
92139p S, 19)SBIA
IBK IST $T

s1ouonnoeld g1

sjuopmIs
92139p S IS
m®k IST 7T

sjuopnIs
92139p S, 19ISB]A
Teak puz 7T

syuopnIs
92139p S IS
K IST ¢

sse[D)

Qouanbas pue
‘SSBIO “Qsed as()

(010T “T8 10 o[eruueds) ZdXgosINOQ

($10T T& 12 O[[o1uULdS) BIJUY

(107 ‘T8 32 of[eruueds) ¢dXgosNUY

($10T ‘Te 30 of[eruuedg) 7dXgosNUY

(#10T 'Te 10 of[oruuess) [dxgosNuY

(penunuod) z alqel,

pringer

Qs

Empir Software Eng

‘sjuedronied Jo pury awes 9y} PAAJOAUT PUE UOTIBIUSWINIOP JO PULY QWIES dY) UO PAseq Sem JeY) JUSWIIAdXd [or UIdISIP 19332 0} pI
pasn op Juswadxa 9y} 10§ pr 9AIssaI301d € ST prom pIry) oy, ‘A[An0adsar ‘Juopnys 99139p S 19)SEIA pue souonnoeld 10§ puels oS]A pue eid ‘o[durexa 1o, ‘Juedonted jo pury oy
SOJEIIPUI pIOM puodas ayJ, "aseyd uSisap oy ur paonpoid sjuawndop soy) 10j spuels () pue aseyd sisA[eue ay) ur paonpoid sjuAWNI0P IS0y} 10J Spue)s (Uy) :UOHBIUSWNIOP
Paseq-TIAN JO pury Y s1sa83ns pIrom)sI1j oy, “Suruedw o1319ads © sey pIom punodwiod yoey "uonejou ased pured-reddn oy Sursn passordxa are sjuawrradxe Y Jo s[oqef YT,

JuedyIugis A[[ed
-nsne)s jou St
QOUAIAYJIP AL,

pasn s[opow
uoyM UOISUY
-oxdwod om0y

JuedIugIs
A[reonsneys st
Q0URIAPIP QYT

JuedJIuSIs A[[eo
-nspe)s jou St
QOURIOIJIP oYL

pasn s[opowr
uoym UOISUY
-oxdwod 1oneg

Juedyiugis
K[reonsnes st
QOURIAJIP YL,

sjuepmis 'yd 01
sjuapnys 2139p

s Jojayoeg
Teak pig G|

sjuopnIs
92139p S J9ISBI
mk IS 9]

s1ouonnoRIg 91

(10T 'T& 32 offeruueds) pydad

(ST0T T8 30 offeruuess) gdxgosgeq

(107 Te 30 of[eruuedS) ¢dxgosNa(g

(S10T "Te 10 o[[e1uuedS) Bido(d

(ponunuoo) g 3qeL,

pringer

N

Empir Software Eng

Table 3 Instances of the process

shown in Fig. 1 considered Sentence Dependent variable

ab Comprehension, Completion Time
abc Comprehension, Completion Time
abd Comprehension, Completion Time
abgbc Comprehension, Completion Time
abgbd Completion Time

abfb Comprehension, Completion Time
abfbc Comprehension, Completion Time
abfbd Comprehension, Completion Time
abeab Efficiency

abeabc Efficiency

abeabd Efficiency

intervals for individual experiments, in addition to an estimate of the overall summary effect
size. This notation also shows the extent to which each experiment contributes to the overall
result.

5 Results and discussion

In Table 3, we show some sentences from the language defined by employing the regular
expression reported in Section 3.4. For example, ab covers the case of no heterogeneity
in which a meta-analysis is not executed, while abc and abd represent the case in which
heterogeneity is ignored or incorporated and a meta-analysis is executed, respectively. Con-
versely, in order to cover the case of exploring heterogeneity, we performed sub-group
analyzes for the dependent variables Comprehension and Completion time, since the exper-
iments were heterogeneous. In particular, we grouped the experiments according to the kind
of models used, namely An (i.e., UML-based models produced in the requirements engi-
neering process) and De (UML-based models produced in the design phase). These cases
are covered by the sentences ab(gb)*c and ab(gb)*d.

Furthermore, ab(fb)*, ab(fb)*c, and ab(f b)*d cover the cases of the application of the
process shown in Fig. 1 when we cleaned the experiment set by excluding those studies that
involved participants with little experience, namely AnBsc, DeBscExpl, and DeBscExp2.
We also considered the cases of not exploring the heterogeneity and employing a further
dependent variable, namely Efficiency,'® which are covered by the sentences ab(eab)*,
ab(eab)*c, and ab(eab)*d.

In the following subsections, we first report the results obtained and then discuss them
according to the cases shown in Table 3. We then present the implications of our study and
conclude with a discussion regarding the threats to validity.

10Efficiency is a derived measure that is computed as the ratio between comprehension and completion
time. Task efficiency is a ratio measure and estimates a participant’s efficiency as regards the execution of
a comprehension task. The larger the efficiency value, the better it is. The perspective we adopted is that of
quality in use (e.g., ISO 2000, 2011), since efficiency measures source-code comprehension achieved during
the expenditure of available models.

@ Springer

Empir Software Eng

Models Source code Mean difference dels Source code Mean difference
Study Total Mean SD Total Mean SD MD 95%Cl Wifixed) Study Total Mean S5 Total Mean- 5 MD 95%-Cl W(random)
s om0 o 080 e 000 (012 0 5w eese s om0 b 080 -4 T
DeBscExp 16 079011 16 079 0.08 000 [0.07: 0.07] 16.8% DoBscExp 16 079011 16 079008 000 [0.07: 0.07] 10.4%
DeMscExp 16 087010 16 078009 009 [0.02 0.16] 17.1% DeMscExpt 16 087010 16 078009 009 (002 0.16] 10.4%
AnMscExp1 24 073015 24 073013 000 [0.08; 0.08] 11.8% AnMscExp1 24 073015 24 073013 0,00 [-0.08; 0.08] 97%
AnMscExp2 22 056023 22 063023 0,07 [0.21; 0,07 4.0% AnMscExp2 22 056023 22 063023 007 [021; 0.07] 67%
AnMscExpd 22 033026 22 059020 026 [040,-012] 4.0% AnMSCExp3 22 033026 22 059020 —*— 026 [0.40;-0.12] 66%
AnPra 18 048023 18 061022 013 [028; 002] 3.4% AnPra 8 048023 18 061022 013 [028; 0.02] 62%
DeMscExp2 12 049013 12 046009 003 [006: 0.12] 98.3% DeMscExp2 12 049013 12 0.460.08 0,03 [0.06; 0.12) 01%
DoPra 8 051010 8 040010 011 [001: 021 7.8% DePra 8 051010 8 040010 011 (001 0.21] 86%
DeMscExp3 8 043011 8 031012 012 (001 023 59% DeMscExpd 8 043011 8 031012 012 (001 0.23] 78%
DeBscExp2 8 038007 7 038011 000 [0.09: 0.09] 83% DeBscExp2 8 038007 7 038011 000 [0.09; 0.09] 88%
5 051003 5 039012 012 (001 023 63% DePhd 5 051003 5 039012 012 (001 0.23] 81%
Fixed offect model 167 002 [0.00; 005 100% Random ffocts model 167 001 [004; 0.08] 100%
Hetorogenaity: -squared=69.8% tau-squared=0.0085, p=0.0001 Hotorogenaity: -squared=69.8%, tau-squarod=0.0085, p=0.0001
(a) abe - Fixed effect model on all the studies (b) abd - Random effects model on all the studies
dels Source code Mean difference Models Source code Mean difference
Study Total Mean- SD Total Mean 5) MD 95%Cl Wifixed) Study Total Mean SD Total Mean SD MD 95%-Cl Wirandom)
DeMscExpt 16 087010 16 078 0.09 009 [002 0.16] 24.6% DeMscExpt 16 087010 16 078009 —— 009 [002; 048] 13.3%
AnhiscExp1 24 073015 24 073013 000 008 0.08] 17.0% AnbscExp1 24 073015 24 073013 — 000 [0.08; 008] 126%
AnhscExp2 22 056023 22 063023 007 [021; 0071 58% AnMscExp2 22 056023 22 063023 007 [021; 0.07] 97%
AnbscExp3 22 033026 22 059020 026 [040,-0.12 57% AnlscExp3 22 033026 22 059 020 —— 026 [-040;-0.12] 96%
AnPra 18 048023 18 061022 013 [028, 002 49% AnPra 18048023 18 061022 ——F -0.13 [028; 0.02] 9.1%
DeMscExp2 12 049013 12 046 0.09 003 [006; 0.12] 13.4% DobiscErs2 12 049013 12 046009 —f— 003 [006; 012] 121%
DePra 8 051010 8 0400.10 0.1 [001; 021] 11.1% 8 051010 8 040010 — 011 (001 021] 117%
DeMscExp3 8 043041 8 031012 012 001 023] B.4% Detvecex 8 043011 8 031012 - 012 [001 023 10.9%
DePhd 5 051003 5 039012 012 [001 023] 9.1% DePhd 5 051003 5 039012 —— 012 [001 023 11.1%
Fixed effect model 135 135 0.03 [0.00; 0.07] 100% Random effects model 135 135 . 001 [0.06; 0.08] 100%
terogeneity: -squared=T?.2%, tau-squared=0.0088, p<0.0001 Hoterogenalty: -squared=77.2%, au-squaroc=0.0088, p<0.0001
02 0 02 02 0 02
(C) ab(fb)*c - Fixed effect model after excluding studies (d) ab(fb)*d - Random effects model after excluding studies
odels Source code Mean difference
Study Total Mean SD Total Mean- 50 MD 95%Cl W(fixed)
Source code Wean difference
Study Total Mean S5 Total Mean- 5D MD 95%-Cl W(fixed) DeBscExpl 16 079041 16 079008 —— 000 [007:007) 23.5%
i DeMscExpt 16 087010 16 078 0.09 —=— 009 [0020.16] 24.0%
AnBsc 8 084013 8 084011 —— 000 [0.12; 0.12] 18.7% DeMscExp2 12 049013 12 0.46 0.09 — 003 [0.06;0.12] 13.0%
AnMscExp1 24 073015 24 073013 000 [0.08; 008] 413% Dera 8 051010 8 040010 0.11 [001:021] 10.9%
AnMscExp2 22 056023 22 063023 007 [021: 007 14.1% DeMscExpd 8 043011 8 031012 012 0011023 82%
AnMscExp3 22 033026 22 059020 026 [0.40;0.12] 13.9% DeBscExp2 8 038007 7 038011 —t 000 [009:0.09] 11.6%
8 048023 18 061022 013 [028 0.02] 12.0% 5 051008 5 039012 012 [001:023] 8.9%
Fixed offoct model 94 9 006 [0.11;0.01] 100% Fixed effect model 73 72 < 0.06 [0.03;0.09] 100%
» . pe0.0155 Hoterogenaity: -squared=34.3%, tausquared=0.001, p=0.1666
1 — 1
02 o 02 02 01 0 01 02
(e) ab(gb)* c - Fixed effect model on the sub-group An (f) ab(gb)* c Fixed effect model on the sub-group De

Fig. 2 Forest plots for Comprehension
5.1 Meta-analysis results

We summarize the results of each experiment, by employing the descriptive statistics of
the measures of the dependent variables. The descriptive statistics for Comprehension (i.e.,
mean, standard deviation, and number of observations) grouped by method are shown in the
forest plot in Fig. 2 (for each of the cases considered shown in Table 3). The same descriptive
statistics for Completion time and Efficiency are reported in Figs. 3 and 4, respectively. It
is worth mentioning that we do not show any results for the sentences ab, abfb, abgb,
and abeab (see Table 3), because the process in Figure 1 does not require the execution
of a meta-analysis. Some other sentences are also not reported (e.g., those that excessively
reduce the number of experiments in the analyzes, see Section 3).

The results are synthesized by means of the Mean Differences (MDs) of the outcome
measures of the experiments. This is possible because the experiments have the same
outcome measures for each dependent variable studied.

Results concerning the testing of heterogeneity are also shown at the bottom of each forest plot
(see, for example, the left-hand side of Fig. 2a). With regard to Comprehension, the results
of the Cochran’s Q test (see Fig. 2a — sentence abc) suggest that the experiments were het-
erogeneous (p=0.0001) while the I-squared values indicates a substantial/considerable het-
erogeneity that is also confirmed by the Tau-squared value. We can, therefore, incorporate
heterogeneity and apply a random effects model (see Fig. 2b — sentence abd).

As the squares in the figure suggest, the experiments contributed equally to the overall
result, that is, the use of models slightly improved source-code comprehensibility (MD =
0.01). Indeed, source-code comprehensibility was not significantly different!! when using

Effect size is statistically different from the overall effect if the diamond (at the bottom of the forest plot)
does not intersect the vertical line.

@ Springer

Empir Software Eng

Moc Source code Mean difference Models Source code Mean difference
Study Total Mean 5D Total Mean 55 wo 95%-C1 Wi(ixed) study Total Mean S Total Mean SO [95%-Cl Wirandom)
Ansc 5 3580 426 8 2013 323 1575 (1205 1945 17.0% ¢ e 4z o 21 0z 1575 (1205 1945 11.8%
DeBscExpt 1 3869 615 16 2119 471 - 1750 [1289; 2211 109% DeBscExpt 16 3869 16 2119 471 750 (1289 2211 1%
DelscExpt 16 30061313 16 2300 761 - 706 [038; 1450 42% DelscExp! % Sosiats 10 2000 Ter 7% Cog: s loon
AnMiscExpt 24 2624 705 24 2555 695 069 327 465 148% AnNiscExpt 24 2624 705 24 2555 695 06y [a27 465 117%
AnMscExp2 22 1951 789 22 1934 7.40 017 [-4.35; 469] 114% AnMSscExp2 22 1951 789 22 1934 7.40 017 [-4.35 469] 116%
AnhscExp3 2 1102 305 22 1588 584 486 (761 211 307% AnNIscExp3 22 1102 305 22 1588 584 486 [T81 211 120%
18 1889 832 18 17.25 7.00 164 [-338; 666] 9.2% AnPra 8.8 32 2 L] (-3.38; 6.66] 11.4%
DebscExp2 1215767 2611 12 16756 1699 —— 2001 [47.56-1228] 0.7% DeMscExp2 1215767 2611 12 18756 1699 —w— 2001 (47561228 66%
DePra 8142253117 614736 4281 ——f— 513 (4183 3157 02% OePra 8142253117 6147364281 —] 513 (4163 3157 26%
DeMiscexps 5 85202601 8 83503398 —— 179 [2786; 3144] 03% DeMscExp3 8 85202601 8 83503398 — 179 (2786 3148 36%
DeBscExp2 811200 3084 7 148,86 4027 ————1 3686 (7356 0.16] 02% DeBscExp2 811200 3084 7 14886 40.27 ——=—— 3686 (7356 0.16] 26%
DePhd 5 94.60 13.69 5 108.40 28.50 —_— -13.80 [-4151; 1391] 0.3% 5 94.60 13.69 5 108.40 28.50 — -13.80 [-41.51; 13.91] 3.9%
Fixed effect model 167 166 333 (181 486 100% Random cffocts model 167 080 586 748 100%
b0t Feepaety equredge. 4, s dns 25,5001
T T
604020 0 20 40 60 604020 0 20 40 60
(a) abe - Fixed effect model on all the studies (b) abd - Random effects model on all the studies
Models Sourcecods Mean differance Models Sourcocods Mean difference
Study Total Mean SD Total Mean SI) wo 95%-Cl Witixed) Study Total Mean SD Total Mean SD Mo 95%-ct
DeMscExp1 16 3006 1313 16 23.00 761 706 [-0.38; 1450] 5.9% DeMscExp1 16 3006 13.13 16 23.00 761 L‘* 7.06 [-0.38; 14.50)
AnMscExpt 24 2624 705 24 2555 695 069 [-027. 465 206% AniscExpl 24 2624 705 24 2555 695 - 069 [327; 465]
AnMscExp2 22 1951 789 22 1934 740 017 [435 469 15.9% AniscExp2 22 1951 789 22 1934 740 = 017 (435 469
ey 2 1102 305 22 158 564 48 (7o 21 427 AMscErp3 2 1102 305 20 1568 684] 486 (761, 211]
Anra 18 1889 832 18 17.25 700 - T64 (338 666 128% AnPra 5 1889 832 25 700 = 164 (338 666]
DetscExp2 12 15767 2611 12 187.56 1699 ———— 2991 (47541228 1.0% DeMscExp2 1215767 2611 12 187,56 16.99 ———— 20,91 [.47.54;-12.26]
v 8142253117 8 147.38 4261 513 (4183 3157 02% ePra 814225 3117 8147384281 ————f——— 513 [41.83 31.57]
DeMscExp3 8 8529 26.01 8 8350 33.98 79 [-27.86; 31.44] 0.4% DeMscExp3 8 8529 26.01 8 8350 33.98 r— 9
ha 5 9460 1369 5 108.40 2850 ————F 1380 (4151, 1391 04% DePhd 94560 1369 510840 2650 — 4 — 1380
Fixed effect model 135 135 A6 1346 0.14] 100% Random effects model 135 135 31 (-850 288]
Hoterogeneity: HSquarsd=81. 7, tau squarec19.42, p=0.017 Heterogenaty: squared=67.7%, tu-squared=10.42, p=0.0017
40 0 0 2 4 40 20 0 20 4
(C) ab(fb)* c - Fixed effect model after excluding studies (d) ab(fb)*d - Random effects model after excluding studies
Sourcocode Mean difference
Study Total Mean 5D Total Mean 50 wo 95%-C1 Wi(ixed)
Source code Mean difference DeBscExp1 16 3869 815 16 21.19 471 17.50 [1289; 2211) 65.1%
Study Total "'"" 5" Total Mean SD o 95%-Cl Wiixed) DeMscExp1 16 3006 1313 16 23.00 7.61 ot 7.06 [-038; 14.50] 250%
] DeMscEnp2 1215767 2611 12 16756 1699 —— 2091 (4754 1228] 45%
Ansc 588 426 82018 323 ‘; ——rem e e me DoPra 14225 3117 5 14738 4281 513 (4103 3167 10%
AnMscExpt 2“ ?52" 705 24 2556 695 - DeMscExp3 § 85292601 B 83503398 — 179 (2786 3144] 16%
AniscExp2 221951789 22 1934 740 —= 017 fass aool 1am% sty 11200 2004 3 14506 dnay —— 1 sone i Ten
AnktscExp3 221102305 22 1588 584 = 48 L7gtai Wey DePhd 5 0460 1369 5108402850 —— I 380 fa1ST 1391 18%
AnPra 18 1889832 18 17.25 7.00 : 64 (336 666 11.1%
H Fixed effect model 73 72 1147 [7.45; 14.89] 100%
Fixed offect model 94 % 175 (007 342 100% B o radean, s squarod=24 .o 001
Helerogensiy: squarsds4.%,tusquarsc=0.84, p<0.0001 i ——

604020 0 20 40 60

(f) ab(gb)*c - Fixed effect model on the sub-group De

0 0 10
(e) ab(gb)*c - Fixed effect model on the sub-group An

Source code Mean difference

Mod
Totsl Mean® 95 Total Wean 58

Study. mD 95%-C1 W(random)
Source code Mean difference

Study Tota Mean 95 Tota Meen 55 MD 95%-Cl Wirandom) DeBscExp1 16 3869 815 16 2119 471 1750 (1289; 22.41] 215%
DeMscExpt 16 30.06 13.1 300 761 fe [-038 1450 208%

AnBsc 83588426 82013323 1575 [1205,19.45] 202% DeMscExp2 12 15767 2611 12 187.58 1699 2991 [4754;-1228) 165%
AnscExp1 242624705 24 2555 6.95 (327, 200% DePra 8142253117 8 147.38 4281 513 [4183; 3157] 9.0%
AnscExp2] D e DeMscExp3 8 85202601 & 83503398 179 [2786 3144 113%
AnMscExp3 22 1102 305 1588 584 486 [761; - 206% DeBscExp2 811200 3084 7 148,86 40.27 ———— 36,86 [73.56; -0.16] 9.0%
T lesesam b 1mas 7o 168 Gose oo roaw DePhd 5 9460 1369 5 108.40 28.50 — 13,80 4151 1391] 120%

Random effects model 94 9 267 [493;1026] 100% Random effects model 73 72 - 492 [1918; 935 100%

s quared=04.9%, tau-squared=70.84, p<0.0001 torogenety: -squared=85%, ausquarod=240., p<0.0001

604020 0 20 40 60

(g) ab(gb)*d - Random effects model on the sub-group An (h) ab(gb)*d - Random effects model on the sub-group De

Fig. 3 Forest plots for Completion Time

or not using models in the execution of comprehension tasks. This result is also confirmed
by the overall 95% confidence interval'2 (IC) whose value is [—0.04; 0.06]. If we decide
to ignore heterogeneity and apply a fixed effects model, we obtain the MD values shown in
Fig. 2a. As we can see, the result is quite similar when taking into account the MD values.
However, the IC value is [0.00; 0.05].

With regard to Completion time, in Fig. 3a (sentence abc), the experiments, according
to the Cochran’s Q test, are heterogenous (p < 0.0001). By incorporating heterogeneity
and applying a random effects model we obtain an MD value of 0.8 and an IC value of
[—5.86; 7.46]. Unlike Comprehension, the squares are not proportional in size when study-
ing Completion time (see Fig. 3b — sentence abd). This signifies that some experiments
contributed to the overall result more than others. The forest plot suggests that the differ-
ence in the completion time is not significant when using or not using models to accomplish
comprehension tasks. However, when ignoring heterogeneity and applying a fixed effects
model (see Fig. 3a — sentence abc), the completion time is statistically different when
using or not using models in comprehension tasks. The MD value is 3.33 while the IC value
is [1.81; 4.86]. The choice of how to manage heterogeneity, therefore, proves that the results
are crucial in this case, and influences the overall results regarding the impact of UML
models on source-code comprehensibility.

12This is a range of values that we are 95% certain that it contains the true mean value.

@ Springer

Empir Software Eng

Models Source code Mean difference
Study Total Mean SD Total Mean SD MD 95%-Cl W(fixed)
|
I
AnBsc 8 236 0.33 8 4321.01 —— ! -1.96 [-2.70;-1.22] 0.2%
DeBscExp1 16 213 055 16 3.94 1.06 — ! -1.81 [-2.40; -1.22] 0.4%
DeMscExp1 16 3.48 1.64 16 3.84 145 — -0.36 [-1.43; 0.71] 0.1%
AnMscExp1 24 298 1.00 24 3.121.15 —— -0.14 [-0.75; 0.47] 0.4%
AnMscExp2 22 332186 22 373212 — -0.41 [-1.59; 0.77] 0.1%
AnMscExp3 22 331283 22 413 2.06 e -0.82 [-2.28; 0.64] 0.1%
AnPra 18 280 144 18 432314 ——— -1.52 [-3.12; 0.08] 0.1%
DeMscExp2 12 0.31 0.07 12 0.25 0.04 0.06 [0.01; 0.11] 63.5%
DePra 8 0.37 0.11 8 0.30 0.14 I 0.07 [-0.05; 0.19] 8.7%
DeMscExp3 8 0.53 0.17 8 0.410.15 1 0.12 [-0.04; 0.28] 5.3%
DeBscExp2 8 0.36 0.11 7 0.28 0.1 " 0.08 [-0.03; 0.19] 10.6%
DePhd 5 0.55 0.09 5 0.36 0.09 e 0.19 [0.08; 0.30] 10.6%
|
Fixed effect model 167 166 i 0.06 [0.03; 0.10] 100%
Heter ity: I-sq .4%, tau-sq .0425, p<0.0001 : : : A : : |

3 -2 1 0 1 2 3

(a) abeabc - Fixed effect model obtained when changing the effect measure and
considering all the studies

Models Source code Mean difference

Study Total Mean SD Total Mean SD MD 95%-Cl W(random)
AnBsc 8 2.36 0.33 8 432101 —— : -1.96 [-2.70;-1.22] 4.0%
DeBscExp1 16 213 055 16 3.94 1.06 —— -1.81 [-2.40; -1.22] 5.5%
DeMscExp1 16 3.48 164 16 3.84 1.45 —— -0.36 [-1.43; 0.71] 21%
AnMscExp1 24 298100 24 312115 —E— -0.14 [-0.75; 0.47] 5.2%
AnMscExp2 22 332186 22 3.73 212 —— -0.41 [-1.59; 0.77] 1.8%
AnMscExp3 22 331283 22 4.13 2.06 — -0.82 [-2.28; 0.64] 1.2%
AnPra 18 2.80 1.44 18 432314 —— -1.52 [-3.12; 0.08] 1.0%
DeMscExp2 12 031 0.07 12 0.25 0.04 B 0.06 [0.01; 0.11] 16.9%
DePra 8 0.37 0.11 8 0.30 0.14 & 0.07 [-0.05; 0.19] 15.6%
DeMscExp3 8 0.53 0.17 8 0.410.15 0.12 [-0.04; 0.28] 14.9%
DeBscExp2 8 0.36 0.11 7 0.28 0.11 - 0.08 [-0.03; 0.19] 15.9%
DePhd 5 0.55 0.09 5 0.36 0.09 0.19 [0.08; 0.30] 15.9%
Random effects model 167 166 % -0.14 [-0.31; 0.02] 100%
Heterogeneity: I-squared=86.4%, tau-squared=0.0425, p<0.0001 .

I

3 -2 -1 0 1 2 3

(b) abeabd - Random effects model obtained when changing the effect measure and
considering all the studies

Fig. 4 Forest plots for Efficiency

Since our experiments were heterogeneous with regard to the two dependent variables,
we also decided to explore heterogeneity and perform sub-group analyzes. In our study, for
both the dependent variables introduced in the design of the study (see Section 4.3), we can
group experiments according to the kind of models: An and De. We postulated (on the basis
of the results of the primary studies) that models produced in the design phase are closer
to source code than those produced in the analysis phase. In other words, we could expect
that De would aid source-code comprehensibility, while An would not. The forest plot for
An and comprehension is shown in Fig. 2e. We used a fixed effects model, for the sentence
abgbc, because of the results of the heterogeneously analysis. That is, it can be considered
that the studies are not heterogeneous since the Cochran’s Q test returned 0.0156 as the value
for p (this is why the the sentence of the regular expression aforementioned is underlined).
The MD value obtained is low (-0.06) and the IC value is [—0.11; —0.01]. It would appear
that the presence of UML analysis models does not aid source-code comprehensibility. The
assumption made in order to explore heterogeneity and stated above was, therefore in some
respects confirmed. The observed results thus allow us to state that UML analysis models

@ Springer

Empir Software Eng

focus on the problem domain of the software (the environment in which the software will
work) and do not provide any support as regards performing comprehension tasks on source
code. Indeed, this kind of models could have confused the participants while comprehending
the source code. For example, it could be possible that the participants trusted the models
and did not pay adequate attention to the source code. These results are, perhaps, not overly
surprising, but they are acceptable, as evidence/postulations need to be empirically verified
and/or reaffirmed through the use of empirical studies (Basili et al. 1999; Kitchenham et al.
2002; Shull et al. 2008).

Figure 2f shows the forest plot of abgbc for the variable Comprehension in the experi-
ments in which the participants were provided with design models (De). The experiments
are not heterogeneous since the Cochran’s Q test returned a value greater than 0.1 (i.e., p =
0.1666). We applied a fixed effects model, since the experiments can be considered homo-
geneous and it is for this reason that the sentence of the regular expression is underlined.
Some experiments contributed to the overall result more than others. The most remark-
able outcome is that the difference between using or not using models is significant. Those
participants provided with design models understood the source code better because the
diamond is on the right-hand side of the vertical line. The MD value is sufficiently large
(i.e., 0.06). It is worth mentioning that only for the sentence abgbc for the variable Com-
prehension and the groups An and De, we observed an homogeneity of the experiments and
applied a fixed effects model (i.e., abgbc).

With regard to Completion time, the meta-analysis results for the An and De sub-groups
(sentences abgbc and abgbd) are summarized in Fig. 3e and f and g and h, respectively.
Note that the experiments were heterogenous (see the Cochran’s Q test, which returned
values less than 0.1 in all the cases). It was for this reason that we applied both the fixed-
and random- effects models, i.e., we ignored and incorporated heterogeneity, respectively.
The plots shown in Fig. 3g and h suggest that the time taken to complete a task was not
significantly different when using or not using An and De models and exploiting a random-
effects model. More specifically, and on the basis of the descriptive statistics, we can deduce
that the participants provided with analysis models needed slightly more time to accomplish
a comprehension task. Those in the other experiments spent less time when accomplishing
the task with design models. In other words, it would appear that the use of design models
paid back the time needed to read them because the effort required to comprehend source
code decreased when compared with the effort of the participants provided with only source
code. It is also worth mentioning that the exploration of the heterogeneity indicated that the
groups of experiments in An and De are not heterogeneous for Comprehension, while they
are heterogeneous for Completion time. This confirms that we have presented in Section 3.3,
i.e., heterogeneity is not only linked to the kind and type of primary studies but also to the
effect measure.

When exploring heterogeneity, one alternative to sub-group analysis is that of carrying
out experiment cleaning. We considered the participants’ experience in order to exclude
experiments. We excluded AnBsc, DeBscExpl, and DeBscExp2 because the participants
in these experiments were Bachelor’s degree students. The forest plots for Comprehen-
sion shown in Fig. 2¢ and d show that the Cochran’s Q test suggests that the experiments
were heterogeneous since the value of p is less than 0.0001 (the Tau-squared and I-squared
values indicated a good extent of such heterogeneity). That is, the experiments were still
heterogeneous after this cleaning. It would appear that the participants’ experience was not
a cause of heterogeneity. We, therefore, incorporated heterogeneity and applied a random
effects model (i.e., that shown in Fig. 2d). It is easy to observe that the model is quite
similar to that shown in Fig. 2b, thus confirming the analysis performed when deciding to

@ Springer

Empir Software Eng

incorporate heterogeneity. Indeed, source-code comprehensibility was not significantly dif-
ferent when using or not using models, and the MD value obtained is 0.01 while the IC
value is [—0.06; 0.08].

Similar to that which occurred with Comprehension, the forest plots for Completion
time (see Fig. 3c and d) suggest that we can consider the experiments to be heterogeneous.
Indeed, the Cochran’s Q test suggests that the experiments were heterogeneous (p <0.1)
and the Tau-squared and I-squared values indicated a good extent of this heterogeneity. We,
then, incorporated heterogeneity and applied a random effects model. Figure 3d shows that
the squares are not proportional in size, i.e., some experiments contributed to the overall
result more than others. Moreover, the forest plot suggests that the difference in the com-
pletion time is not significant when using or not using models, and the MD value obtained
is -1.31 while the IC value is [—5.50; 2.88].

The process shown in Fig. 1 was also used to analyze the case of: (i) not exploring
heterogeneity and (ii) changing the effect measure by exploiting Efficiency (see Table 3).
The results of the Cochran’s Q test (p=0.0001) shown in Fig. 4a and b suggest that the
experiments were heterogeneous. The results of the I-squared indicated a considerable het-
erogeneity (86.4%). This contrasts with the results of the Tau-squared measure, which
suggests that the groups of experiments are not heterogeneous. We considered that exper-
iments were heterogeneous owing to the results of the Cochran’s Q test. We, therefore,
incorporated heterogeneity and applied a random-effects model. The results obtained are
summarized in Fig. 4b. Note that the squares are not proportional in size, i.e., Some experi-
ments contributed to the overall result more than others. Moreover, the forest plot suggests
that efficiency is not statistically different when using or not using models, and the MD
value obtained is -0.14 while the IC value is [—0.31; 0.02]. Conversely, upon ignoring het-
erogeneity and applying a fixed effects model there is a statistically significant difference
when using or not using models (see Fig. 4a). The MD value obtained is 0.06 and the
IC value is [0.03;0.10]. As in the case of abc and abd in Fig. 3, the choice of how to
manage heterogeneity proves to be crucial and can influence the analysis of the impact of
models.

In Table 4, we report a summary of the results shown before. For each dependent variable,
we show the effect of the method according to each case considered in our analysis (i.e.,
some of the paths of the process shown in Fig. 1, illustrating the sentences of the regular
expression defined in Section 3.4) and the corresponding MD and CI values obtained from
the meta-analysis. We present this table to distill the results from our meta-analysis and
to make them easier to understand and to support the discussion of the results in the next
subsection as well.

5.2 Discussion

The participants in our long-term investigation obtained slightly better scores for compre-
hension when using analysis and design models (see row abc in Table 4). The effect of the
method is not significant. We can, therefore, postulate that models do not help a lot partici-
pants to comprehend source code, because these models do provide additional information
on the subject application. In addition, the participants spent more time comprehending
source code. This could be related to the effort needed to infer the information provided by
the models that was definitively not useful as regards attaining an improved comprehension
of source code.

We further investigated this aspect by performing sub-group analyzes, excluding cases,
and changing the dependent variable. The results obtained from the meta-analyzes of the

@ Springer

Empir Software Eng

Table 4 Summary of results. Values for MD and CI are reported only in the case of a significant effect of
the method

Sentence Dependent variable Effect of the method MD 95%-CI

abc Comprehension No - -

abd Comprehension No - -

abgbc Comprehension Yes for both An and De -0.06; 0.06 [-0.11; -0.01]; [0.03; 0.09]
abfbd Comprehension No - -

abc Completion time Yes 3.33 [1.81; 4.86]

abd Completion time No - -

abgbc Completion time Yes for both An and De 1.75; 11.17 [0.07; 3.42]; [7.45; 14.89]
abgbd Completion time No - -

abfbd Completion time No - -

abeabc Efficiency Yes 0.06 [0.03; 0.1]

abeabd Efficiency No - -

two sub-groups suggest that the use of models affects source-code comprehensibility (see,
for example, abgbc in Table 4), but in two slight different directions:

— the use of analysis models reduces source-code comprehensibility and increases the
time taken to complete comprehension tasks;

— the use of design models improves source-code comprehensibility and reduces task
completion time.

This outcome should not be at all surprising because analysis and design models are cre-
ated for different purposes, although companies seem to ignore this difference (Scanniello
et al. 2010) as we also discussed in the introductive part of Section 4. In particular, analysis
models are created to capture a domain, to represent a set of requirements, to understand
a poorly focused problem boundary, and so on, while design models can be used to struc-
ture source code and capture design artifacts that do not directly emerge from requirements
(Bruegge and Dutoit 2003). As such, analysis models say little or nothing about source code
and the use of this kind of models will not, therefore, benefit comprehension. As an exam-
ple, the models of the Music Shop experimental object (i.e., that used in the experiments
carried out by An group) shown in Fig. 5 do not provide implementation details. However,
some details and some design decisions could be inferred. For example, some of the classes
to be understood in Fig. 5b are in the source code (not reported here owing to their scant rel-
evance, but available on the web for download) and also in the class diagram (available on
the web for the download) in the experiments of the De group. That is, some classes in the
problem domain are present in both the solution domain and the source code, thus possibly
allowing the participant to also obtain a little information on the implementation from the
analysis models. This scenario is customary for more traditional development approaches
(e.g., Unified Software Development Process) (Bruegge and Dutoit 2003). With regard to an
example of design decision, the architectural pattern employed could be used in an inferred man-
ner. In particular, we could postulate that the architectural pattern implemented in Music Shop is
thve Model-View-Controller, given the division of the classes in: boundary, control, and entity.

In both the cases mentioned above, it is the developers’ ability (and possibly his/her
knowledge of the subject software and its domain) that could make the difference in terms of
source-code comprehension, rather than the actual information the analysis models provide.

@ Springer

Empir Software Eng

User

Use Case Name: Search Album by Singer

ID: 3

Brief description of the use case:
The user selects an album by specifying the singer’s name. Details of the selected
album will be shown by the system (e.g., original release date)

Main Actors:
User

Flow of events:

1. The User inserts the singer name.

2. The system presents the album list of the specified singer.

3. The user selects the album of interest.

4. The system shows details on the chosen album and the number of available
copies in the stock. As result, the presented information is: original release
date, label, copyright, genres, length, price, and number of available copies.

Pre-condition:
The user has selected the functionality search singer by name.

Post-condition:
1. The system shows details about a given album for the chosen singer.

(@) The Search Album by Singer Use Case

<<entity>>
Stock <<boundary>>
SingerByName
+itemAvalialble(in album) : int 1
+submit()
1
<<entity>> <<control>> <<boundary>>
Album SearchAlbums 1" | PublishedAlbums
abel [SNE—
-lenght
_p,icge . 1 [+submi Name() [+sho
-releaseDate
-copyRight 1
-genres .
+getAlbums(in singerName) <<boundary>>

submit()

ShowAlbumbDetails

+showDetails()

(b) Class diagram

<<boundary>>
<<entity>> <<entity>>
:SingerByName ‘ :Album ‘ | :Stock

<<control>>

create() s

submitSingerName()

getAlbums(name)
albums 1 |

<<boundary>>

selectAlbum(

(c) Sequence diagram for the functionality Search Album by Singer

submit()

itemAvailable(selectedAlbum)

items " ‘

create()

showDetails(selectedAlbum, item

Fig. 5 Some of the analysis models for the Music Shop application

@ Springer

Empir Software Eng

In summary, we can assume that design models help more than analysis models in the
comprehension of source code, since they are focused on the implementation aspects.
On the basis of our considerations, we can summarize our research results as follows:

— Software models produced in the design phase aid in source-code comprehensibility.

Despite the fact that our results improved the findings obtained for the individual exper-
iments conducted in our long-term research, we cannot provide conclusive findings
concerning whether analysis models helped in the understanding of source code in the
context of graduate, undergraduate, PhD students, and novice practitioners.

5.3 Implications

We judged the implications of our study on the basis of the perspectives of practi-
tioner/consultant (from here on simply practitioner) and researcher. When applicable, we
also discuss future research directions related to these implications.

— UML-based modeling is important as it allows an improved comprehension of source
code. These models should focus on aspects related to the solution domain (i.e., imple-
mentation aspects) of a subject software. Models produced in the analysis phase could,
therefore, be considered of less importance if they are only intended to support the
comprehension of source code. Furthermore, these models are of primary importance
when they contain the subsequent development phases. We can speculate on this point
because we used the same software in some of the experiments, but the models were
produced in either the analysis or the design phases (e.g., AnBsc and DeMscExpl).
From the practitioner’s perspective, this result is relevant because it could be useful to
adopt a development process based on the use of the UML. It might, however, be use-
less to give UML-based analysis models to the software engineer when he/she has to
perform small maintenance operations on source code. This is aligned with the findings
of Arisholm et al. (2006), Dzidek et al. (2008) (see Section 2) whose authors stated that
the UML only seemed to be really useful as regards understanding complex systems.
That is, this kind of models should be only used to support the subsequent phases of
the development or to improve the comprehension of functional requirements (Abrahdo
et al. 2013). From the researcher’s perspective, it would be interesting to investigate
whether variations in the context (e.g., larger systems and more or less experienced
software engineers) might lead to different results.

— UML analysis models appear to uselessly overload participants when performing com-
prehension tasks. Once again, the results obtained in our study coincide with those
from some of the related work (e.g., Fernandez-Saez 2015, 2016) in which only design
models appeared to help achieving a better understanding of the systems. This result is
relevant for the researcher because it would be interesting to carry out further research
into this aspect and discover in which context it holds.

— Although we are not sure whether our findings scale up to real projects, the results
obtained could be true in all those cases in which the models are concerned with a
part of the entire software and maintenance operations are performed on a chunk of the
source code of the entire system.

— We observed that the models produced in the design phase aid the comprehension of
source code and postulated that this is because they are closer to source code than those
produced in the analysis phase. It might, therefore, be expected that reverse-engineered
diagrams could also be at least as effective as the forward designed diagrams as regards
aiding source-code comprehension since they are obtained directly from the source

@ Springer

Empir Software Eng

code. Our results and those of Ferndndez-Sdez et. al. presented in Fernandez-Saez et al.
(2015) provide the basis for future work in this direction. This point is clearly rele-
vant for any researchers who might be interested in studying the delineated research
direction. If future work confirms that reverse-engineered diagrams are as effective as
forward ones, the practitioner could be further motivated to use reverse engineering
tools in his/her company.

— We focused on desktop applications. The models of these systems were sufficiently
realistic for small-sized in-house software and subcontracting development projects.
From the researcher’s perspective, the effect of analysis and design models on different
types of systems (e.g., smartphone and web apps) represents a possible future direction
for our research. This point is clearly relevant for the researcher.

— The UML is widely used in the software industry. The results achieved are, there-
fore, useful for all the companies that exploit the UML as a support when software
engineers are executing comprehension tasks (e.g., performing maintenance/evolution
operations). Studies on this notation are currently required to understand the cases in
which its use improves the comprehensibility and maintainability of source code. There
are currently only a few evaluations, as we have discussed in the related work section.

— Dealing with heterogeneity could be crucial, since it may influence the results of the
meta-analysis. This point is clearly of interest for any researchers who might be inter-
ested in studying how to deal with heterogeneity when integrating results from several
studies by using a meta-analysis.

5.4 Threats to validity

Despite our efforts to mitigate as many threats to validity as possible, some are unavoidable.
In order to comprehend the strengths and limitations of our empirical study, the threats that
could have affected the results are presented and discussed as follows.

5.4.1 Internal Validity

This kind of validity is of concern when causal relations are examined. In our study, the
design of the experiments could have affected the results. Different kinds of design were
considered in each experiment. Each group of participants either worked on two different
tasks with and without models (maturation or diffusion or imitation of treatments) or worked
on a single task either with models or without models. The artifacts used to carry out the
experiments (e.g., comprehension questionnaire and documentation) could also have neg-
atively affected the experiments and thus the outcomes of the meta-analysis. We mitigated
these threats by accurately designing all the material used in each experiment. In many
cases, pilot studies were conducted to assess this experimental material. Threats to internal
validity could also depend on how the participants are selected from a larger group. How
the experiments were selected could also have affected the results. With regard to multiple
group experiments the results could have been biased because of the different behavior of
participants in different groups (i.e., interactions with selection). Social threats to internal
validity could also have been present in the experiments.

5.4.2 External validity

Performing experiments with students could lead to doubts concerning their representative-
ness when compared to software professionals (interaction of selection and treatment). In

@ Springer

Empir Software Eng

addition to experiments with students, we also carried out experiments with professionals
and PhD students. It is worth mentioning that the tasks used did not require a high level of
industrial experience. This led us to believe that the use of students was not a major issue
here (Carver et al. 2003). However, if tasks are too simple they may be not representative.
This could imply threats to the validity of the results.

Another threat to external validity concerns the experimental objects (interaction of set-
ting and treatment). For example, we removed comments from source code and did not
provide any explicit information on the traceability links between models and source code.
We took these decisions to avoid the effect of source-code comments and traceability links
being confused with the main factor studied.

With regard to source-code comments, some further considerations are required: (i) com-
ments and source code may not be coherent (i.e., the comment does not describe the intent
of the method and its actual implementation) with one another (Corazza et al. 2016) and
(ii) it is possible that experienced developers (e.g., professionals) do not use comments
(because they are often not updated when source code changes Fluri et al. 2007, Jiang and
Hassan 2006) while performing comprehension tasks (Salviulo and Scanniello 2014). The
first point could be dealt with by modifying the comments to make them coherent with the
source code. Modifications to the comments could aim to restructure them to improve their
readability (and then possibly comprehensibility). Any modification to source-code com-
ments could affect external validity. As for the second point, we can do little or nothing. In
fact, it could be that professional developers (and possibly PhD students) do not take much
care with the comments, while those with little experience do. We, however, advise the use
source-code comments and traceability links in future studies. Our research provides the
basis for future work on this matter. We also indented the source code when preparing the
experimental objects. This design choice could affect external validity. However, many of
the available IDEs provide a feature to remove this kind of smell from source code. There-
fore, it could happen that some of the participants indent the code, while other no. If this
happened a series of threats to the conclusion validity could be risen. That is, if any effect of
this kind of smell could be present it could affect results in an undesirable and uncontrollable
way.

5.4.3 Construct validity

This kind of validity may have been influenced by the measures used to obtain a quanti-
tative evaluation of source-code comprehensibility (inadequate preoperational explanation
of constructs). Construct validity might also have been affected by the comprehension
used and the post-experiment survey questionnaires, in addition to social threats. We
employed post-experiment survey questionnaires designed using standard approaches and
scales (Oppenheim 1992). The responses to this kind of questionnaire were used to explain
the quantitative results. Another threat to external validity is mono-operation bias. All the
experiments in our study included a single independent variable (or treatment). This may
have under-represented the construct and thus not provided the full picture of the theory.
The threat concerning the interaction of different treatments is not present in our research
because the participants were involved in only one experiment. In order to mitigate construct
validity, we conducted external replications and their results were subsequently aggregated
with the other experiments and replications.The fact that the participants in our family
of experiments received the documentation in their native language might also affect the
validity of results.

@ Springer

Empir Software Eng

5.4.4 Conclusion validity

This kind of validity concerns the ability to draw correct conclusions. In order to deal
with conclusion validity, we performed a statistical analysis of the data gathered. Despite
our effort, threats to low statistical power could still have been present. The number of
experiments considered in our study might also have affected the results. With regard to
the selection of the populations, we drew fair samples and conducted our experiments
with participants belonging to these samples. Another threat to conclusion validity could
be related to the number of participants. This kind of threat was mitigated because our
study was based on 333 observations. The reliability of measures might affect results. In
each individual experiment, the experimenters attempted to mitigate this kind of threat
as much as possible. The threat related to the random heterogeneity of subjects could
have been present in our meta-analysis study and in each experiment. We took this aspect
into account in the meta-analysis. Finally, we did not deal with clinical heterogeneity or
methodological heterogeneity. As mentioned in Section 3.2, statistical heterogeneity can be
considered as a consequence of either, or both, clinical heterogeneity or methodological
heterogeneity.

6 Conclusion

In this paper, we have presented the results of long-term research into the effect of using
UML-based modeling in source-code comprehensibility. We removed comments from
source code and did not provide any explicit information on the traceability links between
models and source code. This research began in 2009 with an industrial survey (Scanniello
et al. 2010), and the results of this survey were then used as a basis to conduct a number
of controlled experiments (internal and external replications) with students and practition-
ers from Italy and Spain. The results of individual experiments were synthesized by means
of a meta-analysis and presented in this paper. The most important outcome is: the use
of UML models is important as regards allowing software engineers to better understand
source code, given that these models focus on aspects related to objects (or entities) in the
solution domain of a subject software and source code does not include comments. Models
produced in the analysis phase are of less importance if their purpose is solely to enable the
comprehension of source code.

Possible future directions for our research are: (i) performing further experimenta-
tion considering different and larger software systems related to unknown domains in
order to verify whether the findings obtained are still valid; (ii) studying the effect
of providing the participants with information in an incremental manner; (iii) analyz-
ing the effect of different UML diagrams; (iv) investigating the effect of the same
UML diagrams on non-source code comprehension tasks; and (v) studying the effect
of the UML diagrams combined with source-code comments and traceability informa-
tion on source-code comprehensibility in specific contexts (e.g., safety-critical software
development).

Acknowledgements The authors would like to thank the participants in the experiments and all the people
who supported the research presented in this paper. This work has been partially supported by the SEQUOIA
Project, (TIN2015-63502-C3-1-R) (MINECO/FEDER) funded by Fondo Europeo de Desarrollo Regional
and Ministerio de Econom/ y Competitividad

@ Springer

Empir Software Eng

References

Abrahdo SM, Gravino C, Pelozo EI, Scanniello G, Tortora G (2013) Assessing the effectiveness of sequence
diagrams in the comprehension of functional requirements: Results from a family of five experiments.
IEEE Trans Softw Eng 39(3):327-342

Agarwal R, Sinha AP (2003) Object-oriented modeling with UML: a study of developers’ perceptions.
Commun ACM 46(9):248-256

Anda B, Hansen K, Gullesen I, Thorsen HK (2006) Experiences from introducing UML-based development
in a large safety-critical project. Empir Softw Eng 11(4):555-581

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng 28(10):970-983

Arisholm E, Briand LC, Hove SE, Labiche Y (2006) The impact of UML documentation on software
maintenance: An experimental evaluation. IEEE Trans Softw Eng 32(6):365-381

Basili VR, Rombach HD (1988) The TAME project: Towards improvement-oriented software environments.
IEEE Trans Softw Eng 14(6):758-773

Basili V, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE Trans Softw
Eng 25(4):456-473

Bavota G, Canfora G, Di Penta M, Oliveto R, Panichella S (2013) An empirical investigation on documen-
tation usage patterns in maintenance tasks. In: Proceedings of International Conference on Software
Maintenance. IEEE Computer Society, pp 210-219

Bruegge B, Dutoit AH (2003) Object-oriented software engineering: using UML, Patterns and Java, 2nd edn.
Prentice-Hall, Upper Saddle River

Budgen D, Burn AJ, Brereton OP, Kitchenham B, Pretorius R (2011) Empirical evidence about the UML: a
systematic literature review. Softw Pract Exper 41(4):363-392

Cariou E, Beugnard A, Jezequel JM (2002) An architecture and a process for implementing distributed
collaborations. In: Proceedings of International Enterprise Distributed Object Computing, pp 132-143

Carver J, Jaccheri L, Morasca S, Shull F (2003) Issues in using students in empirical studies in software engi-
neering education. In: Proceedings of International Symposium on Software Metrics. IEEE Computer
Society, pp 239-250

Corazza A, Maggio V, Scanniello G (2016) Coherence of comments and method implementations: a dataset
and an empirical investigation. Softw Q J:1-27. https://doi.org/10.1007/s11219-016-9347-1

Dzidek WIJ, Arisholm E, Briand LC (2008) A realistic empirical evaluation of the costs and benefits of UML
in software maintenance. IEEE Trans Softw Eng 34(3):407—432

Eclipse Modeling Framework (EMF) (2012) http://www.eclipse.org/modeling/emf/

Erickson J, Siau K (2007) Theoretical and practical complexity of modeling methods. Commun ACM
50(8):46-51

Fernandez-Saez AM, Chaudron MRV, Genero M (2013) Exploring costs and benefits of using UML on
maintenance: Preliminary findings of a case study in a large IT department. In: Proceedings of the Inter-
national Workshop on Experiences and Empirical Studies in Software Modeling co-located with the
International Conference on Model Driven Engineering Languages and Systems, pp 33—42

Fernandez-Saez AM, Caivano D, Genero M, Chaudron MRV (2015) On the use of UML documentation in
software maintenance: Results from a survey in industry. In: Proceedings of ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, pp 292-301

Fernandez-Saez AM, Genero M, Caivano D, Chaudron MRV (2016) Does the level of detail of UML
diagrams affect the maintainability of source code?: a family of experiments. Empir Softw Eng
21(1):212-259

Fernandez-Saez AM, Genero M, Chaudron MRV (2013) Empirical studies concerning the maintenance of
UML diagrams and their use in the maintenance of code: A systematic mapping study. Inf Softw Technol
55(7):1119-1142

Fernandez-Saez AM, Genero M, Chaudron MRV, Caivano D, Ramos I (2015) Are forward designed or
reverse-engineered UML diagrams more helpful for code maintenance?: A family of experiments. Inf
Softw Technol 57:644-663

Fluri B, Wursch M, Gall H (2007) Do code and comments co-evolve? on the relation between source code and
comment changes. In: Proceedings of the Working Conference on Reverse Engineering. IEEE Computer
Society, pp 70-79

FuR, Gartlehner G, Grant M, Shamliyan T, Sedrakyan A, Wilt TJ, Griffith L, Oremus M, Raina P, Ismaila A,
Santaguida P, Lau J, Trikalinos TA (2011) Conducting quantitative synthesis when comparing medical
interventions: AHRQ and the effective health care program. J Clin Epidemiol 64(11):1187-1197

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object oriented
software. Addison-Wesley, Boston

@ Springer

https://doi.org/10.1007/s11219-016-9347-1
http://www.eclipse.org/modeling/emf/

Empir Software Eng

Garousi G, Garousi V, Moussavi M, Ruhe G, Smith B (2013) Evaluating usage and quality of technical
software documentation: an empirical study. In: Proceedings of International Conference on Evaluation
and Assessment in Software Engineering, pp 24-35

Gravino C, Tortora G, Scanniello G (2010) An empirical investigation on the relation between analysis
models and source code comprehension. In: Proceedings of the International Symposium on Applied
Computing. ACM, pp 2365-2366

Gravino C, Scanniello G, Tortora G (2015) Source-code comprehension tasks supported by UML design
models: Results from a controlled experiment and a differentiated replication. J Vis Lang Comput 28:23—
38

Grossman M, Aronson JE, McCarthy RV (2005) Does UML make the grade? Insights from the software
development community. Inf Softw Technol 47(6):383-397

Guéhéneuc YG (2007) P-mart: Pattern-like micro architecture repository. In: Proceedings of EuroPLoP Focus
Group on Pattern Repositories

Hammad M, Collard ML, Maletic JI (2011) Automatically identifying changes that impact code-to-design
traceability during evolution. Softw Qual J 19(1):35-64

Higgins JPT, Green S (2008) Cochrane handbook for systematic reviews of interventions, 5th edn. The
Cochrane Collaboration, London

Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J (2006) Assessing heterogeneity in meta-
analysis: Q statistic or i2 index? Psychol Methods 11(2):193-206

Hutchinson JE, Whittle J, Rouncefield M, Kristoffersen S (2011) Empirical assessment of MDE in industry.
In: Proceedings of the International Conference on Software Engineering, pp 471-480

ISO (1991) Information Technology—Software Product Evaluation: Quality Characteristics and Guidelines
for their Use ISO/IEC IS 9126. ISO, Geneva

ISO (2000) ISO 9241-11: Ergonomic requirements for office work with visual display terminals (VDTs) —
Part 9: Requirements for non-keyboard input devices. ISO, Geneva

ISO (2011) ISO/IEC 25010 Systems and software engineering — Systems and software Quality Requirements
and Evaluation (SQuaRE) — System and software quality models. ISO, Geneva

Jedlitschka A, Ciolkowski M, Pfahl D, Sjoberg D (2008) Reporting experiments in software engineering. In:
Shull F, Singer J (eds) Guide to Advanced Empirical Software Engineering, Springer, pp 201-228

Jiang ZM, Hassan AE (2006) Examining the evolution of code comments in postgresql. In: Proceedings of
Mining Software Repositories. ACM, pp 179-180

Juristo N, Moreno A (2001) Basics of software engineering experimentation. Kluwer Academic Publishers,
Dordrecht

Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, El Emam K, Rosenberg J (2002) Preliminary
guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721-734

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering

Lehnert S, Farooq Qua, Riebisch M (2013) Rule-based impact analysis for heterogeneous software artifacts.
In: Proceedings of the European Conference on Software Maintenance and Reengineering, pp 209-218

Leotta M, Ricca F, Antoniol G, Garousi V, Zhi J, Ruhe G (2013) A pilot experiment to quantify the effect of
documentation accuracy on maintenance tasks. In: Proceedings of International Conference on Software
Maintenance, pp 428431

OMG (2005) Unified modeling language (UML) specification version 2.0. Technical report, Object
Management Group

Oppenheim AN (1992) Questionnaire design, interviewing and attitude measurement, Pinter, London

Pavalkis S, Nemuraite L (2013) Process for applying derived property based traceability framework in
software and systems development life cycle. Springer, Berlin Heidelberg, pp 122-133

Pavalkis S, Nemuraite L, Butkiene R (2013) Derived properties: A user friendly approach to improving model
traceability. Inf Technol Control 42(1):48-60

Pickard L, Kitchenham B, Jones P (1998) Combining empirical results in software engineering. Inf Softw
Technol 40(14):811-821

Ried K (2008) Interpreting and understanding meta-analysis graphs - A practical guide, vol 35. Australian
College of General Practitioners, East Melbourne

Salviulo F, Scanniello G (2014) Dealing with identifiers and comments in source code comprehension
and maintenance: Results from an ethnographically-informed study with students and professionals.
In: Proceedings of International Conference on Evaluation and Assessment in Software Engineering.
ACM

Scanniello G, Gravino C, Risi M, Tortora G (2010) A controlled experiment for assessing the contribution of
design pattern documentation on software maintenance. In: Proceedings of the Symposium on Empirical
Software Engineering and Measurement. ACM

@ Springer

Empir Software Eng

Scanniello G, Gravino C, Tortora G (2010) Investigating the role of UML in the software modeling and
maintenance - a preliminary industrial survey. In: Proceedings of International Conference on Enterprise
Information Systems, pp 141-148

Scanniello G, Gravino C, Genero M, Cruz-Lemus JA, Tortora G (2014) On the impact of UML anal-
ysis models on source code comprehensibility and modifiability. ACM Trans Softw Eng Methodol
23(2):13:1-13:26

Scanniello G, Gravino C, Risi M, Tortora G, Dodero G (2015) Documenting design-pattern instances: A
family of experiments on source-code comprehensibility. ACM Trans Softw Eng Methodol 24(3):14

Scanniello G, Gravino C, Tortora G, Genero M, Risi M, Cruz-Lemus JA, Dodero G (2015) Studying the
effect of uml-based models on source-code comprehensibility: Results from a long-term investiga-
tion. In: Springer (ed.) Proceedings of International Conference on Product-Focused Software Process
Improvement, vol 9459. Lecture Notes in Computer Science, pp 311-327

Settimi R, Cleland-Huang J, Khadra OB, Mody J, Lukasik W, DePalma C (2004) Supporting software evo-
lution through dynamically retrieving traces to uml artifacts. In: Proceedings of International Workshop
on Principles of Software Evolution, pp 49-54

Shull F, Carver JC, Vegas S, Juzgado NJ (2008) The role of replications in empirical software engineering.
Empir Softw Eng 13(2):211-218

Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a programming change
task. IEEE Trans Softw Eng 34(4):434-451

Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design traceability and reasoning. J
Syst Softw 80(6):918-934

Tang A, Nicholson A, Jin Y, Han J (2007) Using bayesian belief networks for change impact analysis in
architecture design. J Syst Softw 80(1):127-148

Wohlin C, Runeson P, Host M., Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer, Berlin

Zhi J, Sun B, Garousi G, Shahnewaz SM, Ruhe G (2015) Cost, benefits and quality of software development
documentation: A systematic mapping. J Syst Softw 99:175-198

Giuseppe Scanniello received his Laurea and Ph.D. degrees, both in Computer Science, from the University
of Salerno, Italy, in 2001 and 2003, respectively. In 2006, he joined, as an Assistant Professor, the Department
of Mathematics and Computer Science at the University of Basilicata, Potenza, Italy. In 2015, he became an
Associate Professor at the same university. His research interests include requirements engineering, empir-
ical software engineering, reverse engineering, reengineering, software visualization, workflow automation,
migration, wrapping, integration, testing, green software engineering, global software engineering, cooper-
ative supports for software engineering, visual languages and e-learning. He has published more than 150
referred papers in journals, books, and conference proceedings. He serves on the organizing of major inter-
national conferences (as general chair, program co-chair, proceedings chair, and member of the program
committee) and workshops in the field of software engineering (e.g., ICSE, ASE, ICSME, ICPC, SANER,
and many others). Giuseppe Scanniello leads both the group and the laboratory of software engineering at
the University of Basilicata (BASELab). He recently obtained the Italian National Scientific Qualification as
Full Professor in Computer Science. He is a member of IEEE and IEEE Computer Society. More on http://
www2.unibas.it/gscanniello/.

@ Springer

http://www2.unibas.it/gscanniello/
http://www2.unibas.it/gscanniello/

Empir Software Eng

Carmine Gravino is an Associate Professor at the Department of Computer Science of University of Salerno.
Since 2006 he has been teaching several courses, including Software Engineering, O-O Programming, and
Software Metrics and Quality. He is the co-director of the Software Quality and Measurement (SQM)/Web
Engineering Laboratory and his research interests include software project management, software measure-
ment and functional size measurement methods, predictive modelling for software engineering, software
maintenance and evolution, software technology evaluation through experimental means. He has published
more than 100 papers in international journals, books, and conference proceedings and received several
awards. He has served as organizing and program committee member of several international conferences in
the field of software engineering and is in the editorial boards of international journals. He has also served as
reviewer of several software engineering journals. He is a member of the IEEE.

Marcela Genero is Full Professor at the Department of Technologies and Information Systems at the Uni-
versity of Castilla-La Mancha, Ciudad Real, Spain. She received her MSc degree in Computer Science in
the Department of Computer Science of the University of South, Argentine in 1989, and her PhD at the Uni-
versity of Castilla-La Mancha, Ciudad Real, Spain in 2002. Her research focuses on the following areas:
empirical software engineering, software quality, quality models, conceptual models quality, big data quality,
software modelling effectiveness, etc.. Marcela Genero has published more than 100 peer review papers in
prestigious journals (DKE, EMSE, ACM TOSEM, IST, JSS, SOSYM, etc.) and conferences (CAISE, E/R,
MODELS, ISESE, METRICS, ESEM, EASE, etc.). She co-edited the books titled “Data and Information
Quality” (Kluwer, 2001) and “Metrics for Software Conceptual Models” (Imperial College, 2005), among
others. She participated in several program committees (CAISE, EASE, ESEM, ICEIS, ICSM, ISESE, etc.)
and as reviewer of several journals as well (DKE, EMSE, IEEE TSE, JSS, IST, SOSYM, etc.). She has organ-
ised several conferences, workshops and tutorials on empirical studies in software modelling, evidence-based
software engineering, quality in conceptual modelling, etc. She has managed several research projects which
involved universities and private companies as partners, related to topics within the research areas previously
mentioned. She is member of the International Software Engineering Research Network (ISERN) since 2004.

@ Springer

Empir Software Eng

José A. Cruz-Lemus is an Associate Professor at the Department of Information Systems and Technolo-
gies at the University of Castilla-La Mancha, Ciudad Real, Spain. He is PhD in Computer Science from the
same university. His main research interests are empirical software engineering, software metrics and UML
models quality. He has published his works in several journals (Empirical Software Engineering, Informa-
tion Sciences, Information and Software Technologies, Journal of Systems and Software, etc.), conferences
(MoDELS, E/R, ESEM, etc.), and several book chapters.

Genoveffa Tortora received the Laurea degree in Computer Science from the University of Salerno. Fron
1978 to 1998, she has been with the Department of Computer Scienze. Since 1990, she is a full professor
of computer science. In 1998 she founded the Department of Mathematics and Computer Science and has
been department chair. From 2000 to 2008 she has been Dean of the Faculty of Mathematical, Physical
and Natural Sciences of the University of Salerno. She is an associate editor of International Journal of
Software Engineering and Knowledge Engineering, and associate editor of Journal of Visual Languages and
Computing. From November 1999 to October 2000, she was a member of the board of directors (Consiglio
di Amministrazione) of the University of Salerno. From November 2015 she is a member of the board of
directors (Consiglio di Amministrazione) of Fondazione Ravello. From December 2015 she is a member
of CNGR (National Committee of Research Guarantors) of the Italian Ministry of Education, University
and Research. Her research interests include software engineering, image processing and biometric systems,
human-computer interaction, visual languages, databases, datawarehouses, geographic information systems.

@ Springer

Empir Software Eng

Michele Risi received the Laurea degree in computer science in 2001 and the PhD degree in computer science
from the University of Salerno, Italy, in 2005. He is Assistant Professor in the Department of Computer Sci-
ence at the University of Salerno since 2016. His research interests include Reverse Engineering (architecture
and design pattern recovery), Reengineering, Human-Computer Interaction, Empirical Software Engineering,
Big-Data Analysis, Data-warehouse and Data Visualization, Visual Languages (visual programming envi-
ronment, parsing techniques and sketch understanding), and Mobile Development and Applications. He has
published 90 papers on these topics in international journals, books, and conference and workshop proceed-
ings. He has served as program committee member of several international conferences, and he is member
of the Review Board and Editorial Board of international journals.

Gabriella Dodero retired in 2017, was Full Professor and Vice Rector for Studies at the Free University
of Bozen-Bolzano. Prior to joining FUB in 2006, she was Associate Professor of Computer Science at the
University of Genova, Italy, where she obtained a degree in Mathematics in 1977. Her research interests
deal with empirical software engineering, technologies for education and open educational resources. In
her career, Prof Dodero has also served in various offices at both universities, as Dean of the Faculty of
Computer Science (2007-2009), as Director of University/Enterprise Training Partnership at the University
of Genova (1992-1996), and as Vice President of ISICT, a regional consortium for excellency in higher
education sponsoring top students in ICT subjects (2003-2006).

@ Springer

	Do Software Models Based on the UML Aid in Source-Code...
	Abstract
	Introduction
	Related work
	UML and software maintenance
	Model-based traceability

	Background
	Aggregating results from primary studies
	Assessing heterogeneity
	Dealing with heterogeneity
	A process based approach to deal with heterogeneity

	Our long-term investigation
	Goal
	Context selection
	Selection of variables
	Design
	Experimental tasks and operation
	Analysis procedure

	Results and discussion
	Meta-analysis results
	Discussion
	Implications
	Threats to validity
	Internal Validity
	External validity
	Construct validity
	Conclusion validity

	Conclusion
	Acknowledgements
	References

